МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ЯДЕРНЫЙ УНИВЕРСИТЕТ «МИФИ»

А.К. Будыка

СПЕКТРОМЕТРИЯ ИОНИЗИРУЮЩИХ ИЗЛУЧЕНИЙ. ОСНОВНЫЕ ПОНЯТИЯ И ТЕРМИНОЛОГИЯ

Учебно-методическое пособие

Москва 2021

УДК 539.1.07(075.8) ББК 22.38 Б 90

Будыка А.К. Спектрометрия ионизирующих излучений. Основные понятия и терминология: Учебнометодическое пособие [Электронный ресурс]. – М.: НИЯУ МИФИ, 2021. – 144 с.

В книге приведены определения основных понятий и терминов, встречающихся в учебной и научной литературе по спектрометрии гамма-излучения, заряженных частиц и нейтронов, и размещены в алфавитном порядке. Для удобства приводятся английские эквиваленты русских терминов.

Предназначено для студентов и аспирантов, обучающихся по направлениям подготовки «Ядерные физика и технологии», «Атомные станции: проектирование, эксплуатация и инжиниринг», «Ядерная энергетика и теплофизика», изучающих курс спектрометрии ионизирующих излучений.

Рецензент: гл. конструктор АО «СНИИП», д-р техн. наук, проф. С.Б. Чебышов

ISBN 978-5-7262-2794-8

© Национальный исследовательский ядерный университет «МИФИ», 2021

Редактор Е.Е. Шумакова. Оригинал-макет подготовлен С.В. Тялиной

Подписано в печать 27.09.2021. Формат 60×84 1/16. Уч.-изд.л. 11,25. Печ.л. 11,25. Изд. № 037-1.

Национальный исследовательский ядерный университет «МИФИ». 115409, Москва, Каширское ш., 31.

Предисловие

Настоящая книга предназначена для студентов и аспирантов, обучающихся по направлениям подготовки «Ядерные физика и технологии», «Атомные станции: проектирование, эксплуатация и инжиниринг», «Ядерная энергетика и теплофизика», изучающих курс спектрометрии ионизирующих излучений – раздел экспериментальной ядерной физики, посвященный методам определения энергетических спектров излучений.

В пособии приводятся определения основных понятий и терминов, встречающихся в учебной и научной литературе по спектрометрии гамма-излучения, заряженных частиц и нейтронов. Перечень представленных терминов не является исчерпывающим и в дальнейшем может быть изменен или дополнен.

При подготовке материалов использовались разнообразные источники (справочники, монографии, учебные пособия и др.), ниже приведен список лишь некоторых из них. Определения, данные в настоящем пособии, часто не совпадают с определениями, встречающимися в официальных документах (российских и международных стандартах, официальных справочных изданиях, нормативных актах и т.п.). Это сделано намеренно и связано со стремлением привести наиболее адекватную, по мнению автора, формулировку, отражающую суть процесса или явления, дополнив ее информацией, иллюстрирующей использование термина в контексте задач спектрометрии. Для удобства приведены английские эквиваленты русских терминов. Термины размещены в алфавитном порядке.

Предлагаемая книга будет полезна для подготовки к контрольным работам, зачетам и экзаменам по курсу спектрометрии, но *не является единственным* учебно-методическим пособием. Пособие также может представлять интерес как краткий справочник, облегчающий понимание учебников, оригинальных статей и монографий, в которых затрагиваются вопросы спектрометрии ионизирующих излучений.

Автор сердечно благодарит своих коллег – сотрудников кафедры радиационной физики и безопасности атомных технологий НИЯУ МИФИ доцента В.М. Демина, доцента М.П. Панина и А.А. Званцева за внимательное прочтение рукописи и ряд ценных замечаний, учтенных в итоговом варианте. Автор выражает искреннюю признательность профессору С.Б. Чебышову за сделанные в процессе рецензирования рекомендации и положительную оценку пособия.

СПИСОК ТЕРМИНОВ

Термин	Стр.
Абсолютная эффективность	18
Абсолютная эффективность по пику полного поглощения	18
Авторадиография	18
Активационные детекторы для спектрометрии нейтронов	19
Активность	19
Альфа-активность	20
Альфа-спектрометрия	21
Амплитуда импульса	22
Аналогово-цифровой преобразователь	22
Аннигиляционное излучение	23
Антропогенные радионуклиды	24
Аппаратурная форма линии	24
Асимметрия	25
Аналогово-цифровой преобразователь	25
Аэрозоли радиоактивные	25
Баллистическая ошибка	26

Баллистический дефицит	26
Бета-активность	26
Биркса формула	26
Болометр	28
Внутреннее сопротивление детектора	29
Внутренняя эффективность детектора	29
Временное разрешение спектрометра	30
Время высвечивания сцинтиллятора	30
Время достижения амплитуды	30
Времяпролетный спектрометр нейтронов	31
Выходной импульс усилителя	32
Гамма-спектрометр	32
Гашение сцинтилляций	32
Геометрическая эффективность детектора	33
Германиево-литиевый детектор	33
Гигроскопичность сцинтиллятора	34
Граничная энергия бета-спектра	34
Детектор	35
Детектор из особо чистого германия	35

Детектор пассивированный ионно-имплантированный планарный кремниевый, PIPS®	36
Динамический диапазон усилителя	37
Дисперсия случайной величины	37
Дифференциальная нелинейность	37
Дифференцирующая цепочка	38
Диффузионно-дрейфовый детектор	38
Диффузионный детектор	39
Длинный кабель	39
Длительность импульса	39
Добротность	40
Допплеровское уширение спектральной линии	40
Емкость детектора	41
Естественные радионуклиды	41
Жидкий сцинтиллятор	41
Жидкосцинтилляционная спектрометрия	42
Жизненный цикл объектов использования атомной энергии	43
Запрещенная зона	44
Зарядочувствительный предусилитель	44
Защита многослойная	45

Идентификация радионуклида	45
Изотопы	45
Импеданс коаксиального кабеля	45
Интегральная нелинейность	46
Интегрирующая цепочка	47
Интерполяционный сплайн	47
Ионизационная камера	47
Ионизационная камера с сеткой	48
Ионизационное торможение	49
Ионизирующее излучение	49
Ионно-имплантированный кремниевый ППД	50
Источник ионизирующих излучений	50
Источник нейтронов	51
Каскадное суммирование	52
Классификация нейтронов по энергиям	52
Коллимация альфа-излучения	53
Комптоновский континуум	54
Комптоновский край	54
Комптоновский спектрометр	54

Комптоновское плато	55
Комптоновское рассеяние	55
Конверсионная эффективность сцинтиллятора	56
Коэффициент ослабления линейный	56
Коэффициент ослабления массовый	57
Коэффициент усиления	57
Кремниевый детектор	57
Кремниевый фотоэлектронный умножитель	58
Кривая Брэгга	58
Кривые трансмиссии	59
Критическая энергия электрона	59
Критический уровень	60
Линейная тормозная способность	60
Линейчатый спектр	60
Массовая тормозная способность	61
Медиана распределения	61
Мертвое время	62
Метод аналитической интерполяции для определения ширины пика	62
Метод линеаризации гауссиана для определения параметров пика	63

Метод моментов	63
Метод наименьших квадратов (МНК)	64
Метод подгонки параболизированным гауссианом для определения параметров пика	65
Метод производных (метод Марискотти)	65
Метод пяти каналов для определения положения пика	66
Метод тройных-двойных совпадений	67
Минимальная детектируемая активность (МДА)	69
Многоканальный анализатор импульсов	69
Многокристальный спектрометр	70
Многослойная защита детектора	70
Мода распределения	71
МОКС-топливо	71
Моменты распределения случайной величины	72
Моноэнергетический спектр	72
Мультиплет	72
Напряжение смещения	73
Неорганический сцинтиллятор	73
Непрерывный спектр	74
Непродлевающееся мертвое время	74

Нормальное распределение	75
Образование электрон-позитронных пар	75
Образцовые спектрометрические источники излучений	76
Обратное рассеяние электронов	77
Объект использования атомной энергии	77
Оже-электроны	78
Определение площади одиночного пика	79
Органический сцинтиллятор	80
Относительная полуширина	81
Относительная эффективность	81
Отношение пик-комптон	82
Отношение сигнал-шум	82
Отработавшее ядерное топливо (ОЯТ)	83
Очень большой детектор	84
Память многоканального анализатора	84
Параллельный АЦП	84
Парный спектрометр	85
Период полураспада, T _{1/2}	86
Пик аннигиляционного излучения	86

Пик Брэгга	86
Пик двойного вылета	86
Пик двойной утечки	87
Пик каскадного суммирования	87
Пик обратного рассеяния	87
Пик одиночного вылета	88
Пик одиночной утечки	88
Пик полного поглощения	88
Пик случайного суммирования	90
Пик утечки характеристического рентгеновского излучения	90
Площадь пика	90
Поверхностно-барьерный ППД	91
Поглощенная энергия	91
Подвижность носителей зарядов	91
Подготовка образцов для измерения альфа-активных нуклидов	92
Поиск пика методом производных	93
Поиск пика с помощью регрессионной функции	93
Поиск пика с помощью статистических алгоритмов	94
Полупроводниковый детектор (ППД)	95

Полуширина (ПШПВ)	95
Порог распознавания	95
Постоянная времени RC-цепочки	96
Предел детектирования	96
Предел количественного определения, нижняя граница определяемых содержаний	96
Предусилитель	97
Приборная форма линии	97
Природные радионуклиды	97
Пробег заряженных частиц	98
Продлевающееся мертвое время	99
Продукты деления	100
Пропорциональный счетчик на основе ³ Не	100
Пропускная способность спектрометра	100
Радиационная длина	101
Радиационная стойкость детектора	101
Радиационные потери энергии	102
Радиационный ресурс	102
Радиационный фон	102
Радиоактивные отходы (РАО)	102

Радиоактивные продукты коррозии	103
Радионуклид	103
Разброс пробегов	103
Разрешение мультиплетов методом деконволюции	104
Разрешение мультиплетов методом очистки	106
Распределение Гаусса	106
Распределение Пуассона	106
РЕМИКС-топливо	107
Рентгеновское излучение	107
Световой выход сцинтиллятора	108
Сглаживание экспериментальных данных	108
Сечение взаимодействия	109
Сместитель спектра	109
Смешанный спектр	110
Смещение	110
Собственная эффективность детектора	110
Сопротивление нагрузки	110
Спектрометр	110
Спектрометр антисовпадений	110

Спектрометр нейтронов на основе ионизационной камеры с ³ Не	111
Спектрометрический усилитель	112
Спектрометрия альфа-излучения	112
Спектрометрия ионизирующих излучений	112
Спектрометрия нейтронов	113
Спектрометрия нейтронов методами ядер отдачи	114
Спектрометрия нейтронов с использованием ядерных реакции	115
Среднее значение случайной величины х	117
Средняя длина свободного пробега фотона	117
Средняя энергия образования носителей зарядов	117
Стабилизатор спектра	118
Стандарт КАМАК	118
Стандарт НИМ	118
Стрэгглинг	119
Сферы Боннера	119
Схема антисовпадений	120
Схема полюс-ноль	120
Схема совпадений	121
Сцинтиллятор	121

Сцинтилляторы для гамма-спектрометрии	121
Сцинтилляторы для регистрации нейтронов	122
Сцинтилляторы неорганические для альфа-спектрометрии	122
Сцинтилляционный детектор	123
Сэндвич-спектрометр нейтронов	124
Темновой ток	125
Ток утечки	126
Тормозная способность линейная	126
Тормозная способность массовая	126
Тормозное излучение	126
Трапециевидная фильтрация импульса	127
Тушение сцинтилляций	127
Удельная ионизация	127
Усилитель	128
Фактор Фано	128
Флэш-АЦП	129
Форма пика альфа-излучения	129
Фотопик	129
Фотоэлектронный умножитель (ФЭУ)	130

Фотоэффект (ФЭ)	131
Фронт импульса	131
Функция отклика детектора	131
Центроида (центроид)	132
Цепь восстановления базового уровня	132
Цепь режекции наложений	133
Цифровой спектрометрический тракт	133
Черенковское излучение	134
Чувствительная область детектора	134
Ширина пика на 1/10 высоты	134
Ширина пика на 1/50 высоты	135
Шкала электромагнитных излучений	135
Шумы усилительного тракта	135
Эквивалентная схема детектора	137
Экстраполированный пробег	137
Электронный захват, е-захват	137
Электронный эквивалент мегаэлектронвольта	138
Электроны внутренней конверсии	139
Энергетический спектр	140

Энергетическое разрешение спектрометра	140
Энергия излучения	140
Энергия комптоновского электрона	141
Энергия покоя частицы	141
Энергия связи электрона с ядром	141
Эффект Комптона	142
Ядерный реактор	142
Ядерный топливный цикл	142
<i>RC</i> -цепочки	143
Si-ФЭУ	143
ТОГ-спектрометр	143

Термин	Перевод	Определение, пояснение, примеры
Абсолютная эффективность	Absolute total efficiency	Отношение количества частиц, зарегистрированных детектором, к количеству частиц, испущенных источником. Абсолютная эффек- тивность зависит от конфигурации источник-детектор и от интен- сивности поглощения излучения на его пути от источника к чув- ствительной области детектора
Абсолютная эффективность по пику полного поглощения	Absolute full-energy peak (<i>FEP</i>) efficiency	В гамма-спектрометрии: отношение количества фотонов, зареги- стрированных детектором в пике полного поглощения, к количе- ству фотонов, испущенных источником. Эта величина зависит от тех же параметров, что и абсолютная эффективность, а также от отношения пик-комптон
Авто- радиография	Autoradio- graphy	Метод регистрации заряженных частиц, основанный на форми- ровании скрытых изображений треков частиц в фотоэмульсии при тесном контакте источника (как правило, аэрозольного фильтра больших размеров) с фотопластинкой с нанесенной специальной эмульсией, в течение длительного времени (иногда до нескольких недель), химической обработки фотопластинки и анализе получен- ных изображений. При регистрации альфа-частиц наблюдаются треки, выходящие из источников. Длина трека определяется пробе- гом частиц, зависящего от их энергии, а количество треков – актив- ностью источника. При регистрации бета-частиц наблюдают круг- лые темные пятна, диаметр которых определяется пробегом, а плотность почернения – активностью источника. В настоящее время

		в ядерных технологиях авторадиография практически не использу- ется из-за высокой трудоемкости процесса идентификации и опре- деления активности
Активационные детекторы для спектрометрии нейтронов	Neutron activation detectors, Neutron activation threshold detectors	Активационный метод спектрометрии нейтронов заключается в извлечении информации об энергетическом спектре при облучении набора <i>n</i> мишеней (таблеток, фольг), состоящих из различных материалов. Реакции нейтронной активации являются пороговыми, и известные с хорошей точностью значения их сечений принципиально различны в наборе используемых мишеней – активационных детекторов. По измерению продуктов активации можно восстановить энергетический спектр нейтронов, решив обратную задачу – систему уравнений, состоящих из активационных интегралов $K \int \phi(E) \sigma_i(E) dE = q_i, \ i = 1n,$
		где $\varphi(E)$ – неизвестный спектр; $\sigma_i(E)$ – сечение активации <i>i</i> -й мишени в зависимости от энергии (известные функции); q_i – измеренные активности мишеней, K – коэффициент. В качестве мишеней используются разнообразные изотопы (²⁷ Al, ²⁸ Si, ⁵⁶ Fe, ¹¹⁵ In и
Активность	Activity	др.), на которых протекают реакции (<i>n</i> , <i>p</i>), (<i>n</i> , α) и др. Число спонтанных ядерных превращений в единицу времени. Единицей активности является беккерель (Бк), равный одному рас- паду в секунду (<i>disintegration per second</i>). Ранее использовалась

		внесистемная единица активности – кюри (Ки), равная $3,7 \cdot 10^{10}$ Бк (активность примерно 1 г ²²⁶ Ra). Временная зависимость активности $A(t)$ определяется законом радиоактивного распада:
		$A(t) = A_0 e^{-\lambda t},$ гле. A_0 – активность в начальный момент времени ($t = 0$): λ – посто-
		янная распада, зависящая от периода полураспада $T_{1/2}$ и равная $\ln 2 / T_{1/2}$
Альфа- активность	Alpha- activity	Распад ядра радиоактивного изотопа с испусканием альфачастицы, как правило наблюдаемый у тяжелых ядер с $Z > 82$ ($_{83}$ Bi, $_{84}$ Po и т.д.) В результате распада материнского ядра с зарядом Z и массой M образуется дочернее ядро с зарядом ($Z - 2$) и массой ($M - 4$), а также α -частица (ядро гелия, $_2^4$ He). Энергия Q_{α} , высвобождающаяся при распаде, складывается из суммы кинетических энергий альфа-частиц, дочернего ядра отдачи и энергии гаммаизлучения дочернего ядра. Энергии α -частиц растут с ростом заряда ядра. Диапазон периодов полураспада альфа-активных ядер ($T_{1/2}$) – 24 порядка величины: от 3,04×10 ⁻⁷ с (212 Po, $E_{\alpha} = 8,78$ МэВ) до 1,41×10 ¹⁰ лет (232 Th, $E_{\alpha} = 3,98$ МэВ). Энергетическое распределение альфа-частиц дискретно, причем в большинстве случаев их энергии известны с высокой точностью (с погрешностью до четвертого зна-

		ка), естественная ширина энергетических линий очень мала, от- дельные энергетические линии спектра расположены очень близко из-за расщепления энергетических уровней
Альфа- спектрометрия	Alpha- spectroscopy, Alpha- spectrometry	В основе альфа-спектрометрии (АС) лежат методы определения энергии альфа-излучения по вторичным эффектам, возникающим вследствие потери энергии в чувствительной области детектора. Физическая среда между альфа-излучающим радионуклидом и чув- ствительной областью детектора, как и препарат, содержащий такие нуклиды, будут полностью или частично поглощать энергию альфа- частиц. Вследствие регистрации частиц с меньшей энергией, вы- званной ее потерей по пути к детектору, в спектральных пиках наблюдаются низкоэнергетические «хвосты» и, как следствие, энер- гетическое разрешение ухудшается. При проведении измерений требуется, чтобы толщина образца (препарата) была минимальной. Образец располагают внутри детектора (в случае ионизационной камеры или жидкосцинтилляционного спектрометра) или на мини- мальном расстоянии от него (для систем с полупроводниковым де- тектором); внутренний объем камеры, где расположены источник и детектор, вакуумируется. С помощью ионизационных камер полу- чают результат с приемлемым энергетическим разрешением (по- рядка 0,7 %) для α-частиц с энергией около 5 МэВ. В АС высокого разрешения используют ППД небольшого размера с минимально возможной (до 50 нм) толщиной входного окна. Образцы готовят

		очень тонкими и однородными, расстояние между ними и детектором увеличивают для уменьшения углового разброса, конверсионные электроны иногда отклоняются магнитным полем для снижения мешающих факторов при регистрации. Достигается величина FWHM менее 10 кэВ (обычные значения – 30–80 кэВ). Из-за искусственно сниженной эффективности регистрации AC высокого разрешения не используется при анализе низкоактивных проб. AC применяется при получении ядерных данных (исследования схем распада), для измерения малых активностей альфа-излучателей в окружающей среде, для контроля нераспространения ядерных материалов. В целях безопасности проводят мониторинг отношений изотопов плутония: ²³⁸ Pu/ ²³⁹⁺²⁴⁰ Pu, ²³⁹ Pu/ ²⁴⁰ Pu
Амплитуда импульса	Pulse height	Наибольшее значение функции измеряемой величины, представленной в зависимости от аргумента (например, зависимость напряжения от времени)
Аналогово- цифровой преобразо- ватель	Analog-to digital converter, <i>ADC</i>	Электронная схема, предназначенная для анализа импульсов, расположенная на входе многоканального анализатора (МКА). На выходе аналогово-цифрового преобразователя (АЦП) генерируется двоичное число, пропорциональное амплитуде анализируемого им- пульса. Цепи МКА добавляют единицу в регистр памяти МКА, ад- рес которого соответствует адресу АЦП. АЦП принимает импульсы в заданном диапазоне напряжений (от 0 до 10 В) и сортирует их по большому ряду прилегающих друг к другу ячеек или каналов

		U 14 U
		напряжения равнои ширины. Количество диапазонов напряжении
		(спектрометрических каналов) обычно представляет собой целую
		степень двойки, 2 ^{<i>n</i>} , и называется коэффициентом преобразования
		АЦП. В настоящее время на рынке представлены многоканальные
		анализаторы в стандарте NIM, содержащие два независимых АЦП
		по 16384 каналов (2 ¹⁵), с шириной канала 0,6 мВ.
		В случае, если импульсы не теряются в спектрометрическом
		тракте, число зарегистрированных частиц или квантов N _i в энерге-
		тическом диапазоне $\Delta E = E_{i+1} - E_i$ равно числу импульсов в диапа-
		зоне амплитуд $\Delta A = A_{i+1} - A_i$ и $N_i = p(E_i)\Delta E = p(A_i)\Delta A$, где $p(E)$ и
		p(A) – плотности распределения энергии и амплитуды соответ-
		ственно.
		При спектрометрических измерениях требуется определять ко-
		личество отсчетов в каждом канале. АЦП измеряет амплитуду при-
		ходящего на его вход импульса и при условии, что ее величина
		находится в интервале ΔA , и выдает номер канала <i>i</i> . В аналоговом
		спектрометрическом тракте используются АЦП Уилкинсона и АЦП
		последовательных приближений (АЦП ПП). Время обработки им-
		пульса АШП Уилкинсона зависит от его амплитуды, а АШП ПП- не
		зависит. В нифровом спектрометрическом тракте применяют парал-
		лельные АЦП
Аннигиляцион-	Annihilation	Излучение, состоящее из фотонов с энергиями 0,511 МэВ (масса
ное излучение	radiation	покоя электрона), возникающее при аннигиляции электронно-

		позитронной пары, если позитрон находится в тепловом равновесии со средой. Вследствие допплеровского уширения величина FWHM аннигиляционного пика превышает значение энергетического разрешения детектора, измеренного для 0,511 МэВ
Антропогенные радионуклиды	Man-made (ar- tificial, anthro- pogenic, tech- nogenic) radio- nuclides	Радионуклиды, отсутствующие в окружающей среде (воздух, вода, почва, растительность и т.д.) до пуска первого ядерного реак- тора (Э. Ферми, 1942 г.). Антропогенные радионуклиды образуются в реакциях деления тяжелых ядер (уран, торий), при активации теп- лоносителя, конструкционных материалов ядерного реактора и дру- гих неактивных химических элементов нейтронами, заряженными частицами, гамма-излучением, на ускорителях при взаимодействии ускоренных частиц или ионов с мишенями. Некоторые нуклиды (например, ³ H, ¹⁴ C) образуются как искусственным путем, так и в природе под действием космического излучения
Аппаратурная форма линии	Instrument line shape	Аппаратурная форма линии (АФЛ) $N(x, E_0)$ – реализация функции отклика $G(x, E)$ для моноэнергетического излучения E_0 . В этом случае $N(x, E_0) = \int_{E_{min}}^{E_{max}} G(x, E) \delta(E - E_0) dE$, где x – сигнал с детектора (измеряемая величина). Совокупность АФЛ, рас- считанных или измеренных для нескольких источников моноэнер- гетического излучения в широком диапазоне энергий при тожде- ственных условиях измерений, позволяет определить функцию от-

		клика детектора для данных условий и представить ее в виде таб- лиц, матрицы или совокупности графиков. АФЛ называют также <i>приборной формой линии</i>
Асимметрия	Asymmetry, Skewness, <i>Sk</i>	Асимметрия распределения – величина, определяемая момента- ми распределения случайной величины; характеризуется коэффици- ентом асимметрии (<i>Sk</i>), равным отношению центрального момента распределения третьего порядка к кубу среднеквадратического от- клонения. Асимметрия симметричного пика (например, нормально- го распределения) равна нулю. Асимметрия непрерывного энерге- тического спектра бета-излучения положительна. Аппаратурная форма линии альфа-спектрометров характеризуется хвостом в низ- коэнергетической области, поэтому величина <i>Sk</i> для измеренных пиков альфа-излучения отрицательна
АЦП	ADC	См. Аналогово-цифровой преобразователь
Аэрозоли радиоактивные	Radioactive aerosols	Аэрозоли, дисперсная фаза которых содержит искусственные и (или) естественные радионуклиды. В зависимости от механизма об- разования (диспергирование или конденсация) и сопутствующих факторов (свойства дисперсной фазы и среды) распределения аэро- зольных частиц по размерам, называемое также дисперсностью аэрозолей, существенно различаются. Аэрозоли поступают в орга- низм при дыхании, и доли осажденных аэрозольных частиц в раз- личных участках дыхательного тракта определяются дисперсно- стью аэрозоля. Пробы аэрозолей отбирают на фильтры, а состав

		аэрозолей исследуют после предварительного выделения нуклидов из фильтра, либо при непосредственном измерении запыленных фильтров на спектрометре
Баллистическая ошибка	Ballistic deficit	Эффект неполного собирания зарядов вследствие конечности величины постоянной времени, приводящий к уменьшению ампли- туды сигнала. Баллистическая ошибка (БО) существенна для сцин- тилляционных детекторов, но незначительна для ионизационных и полупроводниковых детекторов. БО приводит к размытию пика полного поглощения
Баллистиче- ский дефицит	Ballistic deficit	См. Баллистическая ошибка
Бета- активность	Beta activity	Ядерное превращение нуклида с испусканием бета-частицы (ядерного электрона, e^- -распад), или позитрона (e^+ -распад). В первом случае испускается также антинейтрино, во втором – нейтрино. К форме бета-распада относится захват электрона с атомной оболочки (e -захват) ядром, сопровождающийся испусканием нейтрино. В результате перечисленных превращений заряд ядра изменяется на 1, а масса практически не меняется. Спектр бета-излучения непрерывен вследствие уноса энергии нейтрино или антинейтрино
Биркса формула	Birks formulae	Отклик сцинтиллятора на регистрацию излучения характеризу- ется соотношением между энергией световой вспышки, генерируе- мой на единичном пути заряженной частицы, и удельной потерей

энергии. Формула Биркса основана на предположении, что высокая плотность ионизации вдоль траектории частицы приводит к тушению сцинтилляций поврежденных молекул и снижению эффективности сцинтилляций в целом. Если допустить, что плотность поврежденных молекул вокруг трека частицы прямо пропорциональна плотности ионизации, то она равна BdE/dx, где B = const. Биркс предположил, что некоторая доля k этой плотности приводит к тушению сцинтилляций, и что в отсутствие тушения удельный световой выход пропорционален удельным потерям энергии: $\frac{dL}{dr} = S \frac{dE}{dr},$ где S = const. Тогда $\frac{dL}{dx} = \frac{S\frac{dE}{dx}}{1+kB\frac{dE}{dx}}$. На практике произведение *kB* определяют подгонкой экспериментальных данных, полученных на конкретном сцинтилляторе. В случае, если удельные потери энергии частицы малы для достаточно больших значений энергии частиц (как у электронов), $\left(\frac{dL}{dx}\right)_{a} = S \frac{dE}{dx}$ или $\left(\frac{dL}{dE}\right)_{a} = S$, откуда

		$L = = \int_0^E \frac{dL}{dE} dE = SE$: при регистрации электронов световыход L
		прямо пропорционален энергии. Для альфа-частиц величина $\frac{dE}{dx}$
		очень велика, поэтому $\left(\frac{dL}{dx}\right)_{\alpha} = \frac{S}{kB}$. Световыход можно также
		определить, проинтегрировав $\frac{dL}{dx}$: $L = \int_0^R \frac{dL}{dx} dx = \frac{S}{kB}R$, где R – про-
		бег альфа-частицы (L пропорционален пробегу альфа-частицы)
Болометр	Bolometer	Болометр (Б.) представляет собой высокочувствительный детек- тор альфа-частиц – калориметр, работающий при температурах 0,1 К и ниже. Б. состоит из двух основных частей: поглотителя (аб- сорбера), в котором поглощенная энергия альфа-частицы приводит к повышению температуры, и термодатчика (термометра) для ее измерения. Теплоемкость поглотителя (диэлектрик, металл или по- лупроводник) при низких температурах настолько мала, что повы- шение температуры за счет взаимодействия единственной альфа- частицы с веществом становится заметным. Ее энергия, передавае- мая электронам атомов среды в процессах ионизации и возбужде- ния, расходуется на образование носителей заряда (в полупровод- никовых материалах электронно-дырочных пар) и фононов (коле- бания решетки и тепло). В Б. регистрируется энергия фононов. Если

		электронно-дырочные пары рекомбинируют в Б. в течение времен- ного разрешения системы, их энергия тоже передается фононам, которые также обнаруживаются. В Б. теоретически может быть до- стигнуто лучшее энергетическое разрешение, чем в кремниевых детекторах: расчеты показывают, что FWHM в германиевых или медных Б. составляет величины порядка 1 кэВ для альфа-частиц с энергией 5 МэВ. В экспериментах удалось достичь разрешения 4 кэВ для источника ²³⁸ Pu, измеренного с помощью композитного медно-германиевого Б. Отклик детектора составлял 10 ⁻⁸ –10 ⁻⁷ В/кэВ, а фронт и спад импульса – 1 и 5 мс соответственно
Внутреннее сопротивление детектора	Internal resistance of detector	Отношение напряжения смещения к току, протекающему через детектор при регистрации ионизирующих излучений. Внутреннее сопротивление на несколько порядков величины превышает сопро- тивление нагрузки, поэтому детектор можно рассматривать как ге- нератор тока во внешнюю цепь нагрузки
Внутренняя эффективность детектора	Intrinsic detector efficiency	Отношение количества частиц, зарегистрированных детектором, к количеству частиц, попавших в него. В гамма-спектрометрии сле- дует уточнять, о чем идет речь: либо об отношении количества гам- ма-квантов, зарегистрированных детектором (в том числе и рассе- янных в результате эффекта Комптона), к количеству гамма- квантов, попавших в детектор, либо об отношении гамма-квантов, зарегистрированных детектором в пике полного поглощения, к ко- личеству квантов, попавших в детектор (<i>intrinsic peak efficiency</i>).

		Внутренняя эффективность не зависит от геометрии измерений – размеров источника, детектора и расстояния между ними
Временное разрешение спектрометра	Time resolution of spectrometer	Минимальное время между событиями, которые воспринимают- ся регистрирующей аппаратурой раздельно. Определяется длитель- ностью импульса детектора, зависящей от времени собирания заря- да, образовавшегося при регистрации частицы или кванта, а также быстродействием блоков электронного спектрометрического тракта
Время высве- чивания сцин- тиллятора	Scintillator's decay time	Время т, за которое интенсивность свечения сцинтиллятора снижается в <i>е</i> раз. Время высвечивания (ВВ) определяется типом сцинтиллятора, его внутренними характеристиками и процессами, протекающими во время преобразования энергии ионизирующего излучения в оптические фотоны. Идеальный сцинтиллятор должен обладать как можно меньшим ВВ, так как величиной т определяется длительность фронта импульса напряжения, возникающего при регистрации излучений, и, следовательно, быстродействие детектора. ВВ аналогично времени сбора зарядов в ионизационных и полупроводниковых детекторах. Динамика высвечивания сцинтиллятора описывается суммой двух (иногда- большего количества) экспонент, описывающих вклад быстрого и медленного компонентов. Как правило, быстрый компонент доминирует
Время дости- жения ампли- туды	Peaking time	Время нарастания напряжения от момента превышения порога дискриминации (0,1 % от амплитуды) до его максимального значения (амплитуды сигнала)

Времяпролет-	TOF, time-of-	Определение энергетического спектра нейтронов $\phi(E)$ по вре-
Времяпролет- ный спектро- метр нейтронов flight neut spectrome	<i>TOF</i> , time-of- flight neutron spectrometer	Определение энергетического спектра нейтронов $\varphi(E)$ по вре- мени пролета <i>t</i> известного расстояния <i>l</i> (пролетной базы) является наиболее прямым методом нейтронной спектрометрии. Вплоть до 14–20 МэВ нейтроны можно считать нерелятивистскими частицами, поэтому энергия нейтрона $E_n = ml^2/2t^2$ и распределение по време- нам прохождения базы $\varphi(t)dt = \varphi(E)dE$ (<i>m</i> – масса нейтрона). Принцип работы времяпролетного спектрометра основан на реги-
		страции моментов появления нейтрона в начале и конце пролетной базы. Точность метода зависит от точности фиксации обоих времен и точности измерения <i>l</i> . Начало движения нейтрона может быть за- фиксировано по факту появления импульса в установленном рядом с источником детекторе от сопутствующей рождению нейтрона за- ряженной частицы или гамма-кванта; по импульсу от протона отда- чи в водородсодержащем детекторе или по времени «вспышки» в импульсном источнике нейтронов. При фиксации стартового им- пульса запускается временной анализатор, фиксирующий также время появления нейтрона в конце базы. Измеренный временной промежуток поступает в соответствующий канал анализатора. По-
		грешность измерения E_n определяется погрешностью τ измерения времени пролета, зависящей от многих факторов, а энергетическое разрешение характеризуется величиной τ/l . В качестве регистрато- ров используются детекторы на основе органических или газовых сцинтилляторов с малой (порядка нс) длительностью высвечивания

Выходной импульс усилителя	Amplifier output pulse	Сформированный импульс на выходе усилителя, содержащий необходимую количественную информацию о поглощенной в де- текторе энергии излучения для его дальнейшей классификации, и имеющий минимально возможную длительность для снижения ве- роятности наложения импульсов
Гамма- спектрометр	Gamma spectrometer	Установка, состоящая из детектора гамма-излучения с блоком питания, устройств для усиления и формирования сигналов от де- тектора, блоков для накопления и классификации этих сигналов и вывода информации (энергетического спектра) в удобном виде, а также устройств обработки измерительной информации. Наиболее распространенные детекторы гамма-излучения – сцинтилляционные на основе неорганических сцинтилляторов и полупроводниковые из особо чистого германия
Гашение сцинтилляций	Quenching	Снижение квантового выхода флуоресценции вследствие раз- личных эффектов в жидком сцинтилляторе. При химическом гаше- нии сцинтилляций (ГС) молекулы некоторых примесей «перехваты- вают» энергию возбуждения от молекул растворителя до ее переда- чи молекулам активатора и «сбрасывают» ее посредством безызлу- чательных переходов. Оптическое ГС происходит за счет поглоще- ния квантов определенных длин волн. Для количественного описания зависимости эффективности ре- гистрации от ГС в системах на основе жидких сцинтилляторов ис- пользуют параметры гашения. Наиболее употребительные из них:

		1) параметры, основанные на спектральных характеристиках измеряемого препарата – SCR (Spectral Channel Ratio) и SIS (Spectral Index of the Sample). Для группы методов, учитывающих гашение с помощью этих параметров, нужна априорная информация о составе пробы, а также наличие стандартов измеряемого нуклида с различными уровнями гашения. Соотношение скоростей счета в различных энергетических каналах (SCR) позволяет судить о деформации спектра. Спектральный индекс препарата (SIS) определяется средней амплитудой импульсов в аппаратурном спектре препарата и является наиболее чувствительным параметром гашения, не зависящим от активности препарата, его объема и др.; 2) параметры, основанные на спектральных характеристиках внешнего стандарта – под флаконом с измеряемым препаратом размещают внешний источник гамма-излучения (¹³³ Ba), создающий комптоновский спектр, который смещается в низкоэнергетическую область с ростом гашения. Среди этих параметров – SIE (Spectral Index of the External Standard) и др.
Геометрическая эффективность детектора	Geometric efficiency of detector	Отношение количества частиц (квантов), попавших в детектор (при этом не обязательно зарегистрированных), к количеству частиц (квантов), испущенных источником. Очевидно, геометрическая эф- фективность зависит только от геометрических параметров
Германиево- литиевый	Ge(Li) detector	Детектор гамма-излучения, в котором чувствительной областью является обедненная носителями заряда зона собственной проводи-

детектор		мости <i>p-i-n</i> перехода, образованная при дрейфе ионов лития вглубь монокристалла германия. Во избежание выхода лития на поверхность из-за высокого коэффициента диффузии Ge(Li) детектор хранят и используют при температурах жидкого азота (77 K). В настоящее время эти детекторы практически не используются, так как им на замену пришли детекторы из особо чистого германия (HPGe), требующие охлаждения только во время измерений и хранящиеся при комнатной температуре
Гигроскопич- ность сцинтил- лятора	Hygroscopicity of scintillator	Параметр сцинтиллятора, относящийся к его эксплуатационным характеристикам: способность поглощать водяной пар из воздуха, измеряемая по увеличению массы материала, помещаемого во влажную атмосферу. Гигроскопичность сцинтиллятора – отрицательное свойство некоторых кристаллов, в первую очередь – щелочно-земельных: NaI(Tl), LaBr ₃ и др., в течение 6–10 ч насыщаемых влагой. Для использования в сцинтилляционных детекторах гигроскопичный сцинтиллятор помещается в тонкий металлический кожух, исключающий попадание влаги внутрь
Граничная энергия бета- спектра	Boundary energy of beta-spectrum	Наибольшая энергия бета-частиц: $\beta^{-}(\beta^{+})$ в непрерывном энерге- тическом спектре бета-излучения радионуклида. Соответствует случаю условного превращения нейтрона (протона) в ядре по реак- ции $n \rightarrow p + e + v^{-}(p \rightarrow n + e^{+} + v)$, при котором энергия антиней- трино (нейтрино) равна нулю

Детектор	Detector	В спектрометре – главный элемент, удовлетворяющий следую- щим требованиям: строго однозначная (лучше – прямо пропорцио- нальная) связь между выходным сигналом детектора и поглощен- ной энергией излучения; простой механизм сбора сигналов с детек- тора, пригодных для трансформации в удобную для их последую- щей классификации форму; энергетическое разрешение, позволяю- щее идентифицировать и разделять близко находящиеся энергети- ческие пики; высокая стабильность характеристик детектора и его эксплуатационных параметров по отношению к внешним факторам, в том числе стабильность во времени. Кроме первого требования, остальные являются качественными и оцениваются в контексте рас- сматриваемых задач. К наиболее распространенным в ядерных тех- нологиях детекторам излучений относятся, полупроволниковые
		сцинтилляционные, газовые ионизационные
Детектор из особо чистого германия	HPGe, high purity germani- um detector	Полупроводниковый детектор гамма-излучения, в котором чув- ствительной областью является обедненная носителями зарядов зо- на собственной проводимости <i>p-i-n</i> перехода, полученная из моно- кристалла сверхчистого Ge. На одной стороне заготовки создают омический контакт имплантацией ионов бора и последующим напылением золота или осаждением никеля. На другой стороне кристалла создается <i>p-n</i> переход за счет диффузии лития и омиче- ский контакт. При подаче обратного <i>смещения</i> на переход добива- ются расширения обедненной носителями заряда области практиче-

		ски на всю толщину заготовки. Эти детекторы отличаются наилуч- шим энергетическим разрешением. Выпускаются коаксиальные и планарные детекторы, детекторы с колодцем, разного объема, рас- считанные на различные энергетические диапазоны. Основными производителями HPGe детекторов являются Ortec (Ametec), Canberra (Mirion Technology), BSI. Измерение с помощью HPGe вы- полняют при температуре жидкого азота (LN ₂), равной 77 K, а хра- нят детектор при нормальной температуре. Помимо метода охла- ждения с помощью сжиженного азота используют электромехани- ческие охладители на основе тепловых циклов, понижающие рабо- чие температуры до 78–83 К
Детектор пас- сивированный ионно- имплантиро- ванный пла- нарный крем- ниевый, PIPS®	Passivated Implanted Pla- nar Silicon de- tector, PIPS® (PIPS® detec- tors)	Детекторы PIPS (торговое наименование детекторов фирмы Canberra) отличаются от других кремниевых ППД. В них <i>p-n</i> пере- ход находится внутри слоя кремния; контакты, сформированные методом ионной имплантации, обеспечивают тонкий, хорошо сформированный переход; окно детектора имеет достаточную прочность, что позволяет проводить его дезактивацию; детекторы имеют небольшой ток утечки (порядка нА) и толщину мертвого слоя не более 500 Å; стандартные модели детекторов PIPS могут работать при температурах до 100 °C. Детекторы используются в спектрометрии заряженных частиц (α- и β-частиц). Производятся детекторы с площадью от 25 до нескольких тысяч мм ² . Нижний предел энергетического разрешения альфа-излучения равен 8–
		8,5 кэВ по линии ²⁴¹ Am, а бета-излучения – 17–30 кэВ.
---------------------------------------	----------------------------	--
		Фирма ORTEC производит аналогичные детекторы ULTRA® и ULTRA-AS®
Динамический диапазон усилителя	Dynamic range	Динамический диапазон усилителя (ДДУ) определяется отноше- нием максимального уровня входного сигнала усилителя к его ми- нимальному уровню при условии сохранения линейной зависимо- сти между выходными и входными сигналами. Минимальный уровень (чувствительность) обычно определяется собственными шумами усилителя. ДДУ численно равен логарифму отношения максимальной амплитуды входного сигнала усилителя, при которой искажения сигнала достигают предельно допустимого значения, к чувствительности усилителя
Дисперсия случайной величины	Variance	Числовая характеристика распределения $p(x)$ дискретной или не- прерывной случайной величины x , равная $D(X) = M(x - Mx)^2$. Здесь M – оператор математического ожидания случайной величи- ны. Квадратный корень из дисперсии случайной величины называ- ется <i>среднеквадратическим (стандартным) отклонением</i> . Диспер- сия случайной величины равна центральному моменту распределе- ния второго порядка
Дифференци- альная нели-	Differential nonlinearity,	Характеристика усилителя, отражающая гладкость его реальной характеристики:

нейность	DNL	$\xi = \frac{K - K_r}{K},$
		где $K = \left(\frac{dA_{\text{вых}}}{dA_{\text{вх}}}\right)$ – коэффициент усиления (индекс <i>r</i> относится к
		реальным значениям), $A_{\rm вых}$ и $A_{\rm вx}$ - амплитуды выходного и входного импульсов, соответственно. Дифференциальная нелинейность, искажающая форму спектральной линии и приводящая к смещению максимума пика и изменению его ширины, не должна превышать несколько десятых процента для ППД и несколько процентов для сцинтилляционного детектора. Аналогичный параметр является характеристикой аналогово-цифрового преобразователя (АЦП)
Дифференци- рующая цепочка	Differentiator, high-pass filter	Фрагмент электрической цепи, содержащий емкость C_D и резистор R_D – фильтр, ослабляющий низкочастотную составляющую сигнала и пропускающий его высокочастотную составляющую. Постоянная времени <i>CR</i> -цепочки равна $\tau_D = C_D R_D$. За это время амплитуда исходного сигнала А (ступеньки) спадает по экспоненте до уровня 0,37 А. Длительность импульса на входе <i>RC</i> цепочки должна быть меньше ее постоянной времени τ_D
Диффузионно- дрейфовый детектор	Diffused- drifted detector	Кремниевый детектор <i>p-i-n</i> типа с <i>p</i> -проводимостью. При изго- товлении ионы лития сначала диффундируют, а затем дрейфуют с поверхности вглубь кристалла при температуре 400 °C (при напря- жении в несколько сот вольт). Образуется кристалл с компенсиро-

		ванной плотностью примесей, имеющий только собственную про- водимость. Изготовляют и планарные, и коаксиальные диффузион- но-дрейфовые детекторы с толщиной чувствительной области до десятков миллиметров
Диффузионный детектор	Diffused junction detector	Диффузионные детекторы (ДД) принадлежат к первому поколе- нию кремниевых ППД; <i>p-n</i> переход образуется при диффузии до- норных или акцепторных примесных атомов в тонкий поверхност- ный слой полупроводников <i>p-</i> или <i>n</i> -типов на глубину до 2 мкм. В большинстве случаев исходным материалом служит <i>p</i> -кремний, а донором – фосфор. Эти детекторы работают без охлаждения, а тол- щина обедненного носителями зарядов (чувствительного) слоя у них составляет 0,2–0,5 мм. Недостатком ДД является наличие мерт- вого слоя, который задерживает заряженные частицы до их попада- ния в чувствительную область
Длинный кабель	Long cable	Кабель, на длине которого умещается не менее ¹ / ₄ длины волны распространяемого по нему переменного сигнала. При длительно- сти импульса полупроводникового детектора в несколько десятков нм кабель протяженностью 50–100 см будет в указанном смысле длинным
Длительность импульса	Pulse width	Время от начала до окончания превышения сигнала порога дис- криминации измеряемой величины (напряжения, тока и т.д.)

Добротность	Figure of merit, FoM	Показатель качества, используемый для характеристики эффек- тивности устройства (в том числе спектрометра), системы или ме- тода по отношению к его альтернативам. Количественной величи- ной, характеризующей добротность, служит величина <i>FoM</i> (figure of merit), которая определяется при необходимости измерения кон- кретного радионуклида: $FoM = E^2/B$, где $E - эффективность реги-страции, %, В – фон, имп/мин. Как правило в спектрометрии ис-пользуется для выбора того или иного спектрометра для измерениймягкой области спектра. Мерой добротности спектрометра является$
		также величина отношения сигнал-шум (SNR)
Допплеровское уширение спек- тральной линии	Doppler broad- ening of spec- tral line	Увеличение полуширины спектральной линии, связанной с ан- нигиляцией электронно-позитронной пары, из-за того, что анниги- ляция происходит после термализации позитрона и его взаимодей- ствия с движущимся свободным или связанным электроном $(e^- + e^+ \rightarrow \gamma_1 + \gamma_2)$. В системе центра масс два образующихся гамма-кванта из-за сохранения энергии и импульса движутся в про- тивоположных направлениях с энергией $E_0 = 511$ кэВ каждый. Од-
		нако в лабораторной системе отсчета энергия двух аннигиляционных фотонов вследствие эффекта Допплера смещена относительно 511 кэВ на величину $\Delta E \sim \pm cp_{-,L}/2$, где c – скорость света в вакууме; $p_{-,L}/2$ – продольная компонента импульса электрона. Если при энергиях порядка 511 кэВ разрешение германиевого ППЛ примерно

		равно 1,4 кэВ, то полуширина аннигиляционного пика составит около 2,6 кэВ
Емкость детектора	Detector's capacity	Электрическая емкость детектора, измеренная между сигналь- ными выводами. Емкость ионизационных камер – величина посто- янная. Емкость ППД зависит от приложенного напряжения смеще- ния, влияющего на толщину чувствительной области детектора (ем- кость <i>p-n</i> перехода)
Естественные радионуклиды	Natural radio- nuclides, NORM (Natu- rally Occurring Radioactive materials)	Терригенные радионуклиды (изотопы ²³⁸ U, ²³⁵ U, ²³² Th и др.) и их дочерние продукты (изотопы радия, радона, полония, висмута, свинца), а также ⁴⁰ K, ⁸⁷ Rb и некоторые другие долгоживущие нуклиды; космогенные радионуклиды – радиоактивные изотопы бериллия, углерода, трития, рубидия, самария, серы, фосфора и др.
Жидкий сцин- тиллятор	Liquid scintillator, LS	Растворенный в органическом растворителе органический сцин- тиллятор (активатор) с добавками. Смесь, подготовленная к исполь- зованию, называется жидко-сцинтилляционным (ЖС-) коктейлем. В большинстве ЖС-коктейлей в качестве растворителей использу- ются толуол, бензол, изомеры ксилола и др. Энергия заряженных частиц расходуется на ионизацию и возбуждение молекул раство- рителя. В толуоле лишь около 10 % возбужденных молекул участ- вуют в сцинтилляционном процессе – испускании фотонов. Отно- шение числа испущенных квантов света к числу возбужденных мо- лекул называется квантовым выходом флуоресценции. Для его по-

		вышения в растворитель (толуол) добавляют сцинтиллятор (напри- мер, РРО), нижний уровень возбуждения которого должен быть меньше уровня возбуждения молекул растворителя. С ростом кон- центрации сцинтиллятора значение квантового выхода флуоресцен- ции сначала растет, затем снижается. При оптимальной концентра- ции почти вся энергия возбужденных состояний растворителя пере- дается молекулам сцинтиллятора и преобразуется в фотоны. Дли- тельность флуоресценции – порядка 1–10 нс. Фотоны регистриру- ются с помощью ФЭУ. В раствор можно добавлять вещества – сме- стители спектра, преобразующие фотонное излучение в более длинноволновое для его соответствия наибольшей величине спек- тральной чувствительности фотокатода используемого ФЭУ
Жидкосцин- тилляционная спектрометрия	Liquid scintilla- tion spectrome- try, LS count- ing, LSS tech- nique	Метод исследования энергетических спектров альфа- и бета- активных нуклидов, пробы которых растворяют в жидкосцинтилля- ционном коктейле, помещают в кюветы и измеряют одним или не- сколькими фотоэлектронными умножителями. Основные достоин- ства жидкосцинтилляционной спектрометрии (ЖСС) заключаются в возможности проведения измерений в 4 π -геометрии, простой про- цедуре приготовления источников и возможности обеспечивать массовые поточные измерения. С помощью ЖСС с высокой эффек- тивностью измеряются мягкие β -излучающие нуклиды ³ H, ⁶³ Ni,

		Эффективность регистрации высока: от 0,5 для ³ Н (граничная энергия бета-спектра примерно равна 18,6 кэВ) до 1 для высоко- энергетических бета-частиц (⁹⁰ Y) и альфа-излучения. Идентификация сложных смесей нуклидов в жидкосцинтилля- ционной спектрометрии достигается при использовании метода оцифровки перекрытия спектров (Digital Overlay Technique, DOT), основанного на априорной информации об эффективности реги- страции каждого нуклида как функции химического и цветового гашения. Для основных нуклидов хранятся нормализованные спек- тры стандартов как функции гашения. Любые отдельно взятые дан- ные по гашению могут быть скомбинированы при анализе много- компонентных смесей. Можно разрешать до трех чистых бета- излучателей, присутствующих в смеси. Недостатком метода является существенная зависимость ре- зультатов измерений от степени идентичности измеряемых и ка- либровочных образцов. Фактором, влияющим на идентичность об- разцов, служит изменение световыхода вследствие эффектов цвето- вого, химического и ионизационного гашения (тушения) сцинтил- ляций
Жизненный	Life cycle of	Размещение, проектирование, конструирование, производство,
цикл объектов	Nuclear energy	сооружение или строительство (включая монтаж, наладку, ввод в
использования	facilities	эксплуатацию), эксплуатация, реконструкция, капитальный ремонт,
атомной		вывод из эксплуатации (закрытие), транспортирование (перевозка),

энергии		обращение, хранение, захоронение и утилизация объектов исполь- зования атомной энергии (ОИАЭ), в зависимости от категории ОИАЭ
Запрещенная зона	Band gap	Область значений энергии, которыми не может обладать элек- трон в идеальном кристалле (без вакансий, дефектов и примесей). Расположена между заполненной электронами валентной зоной и зоной проводимости. Ширина запрещенной зоны определяет прово- дящие свойства материала: если ее величина находится в диапазоне 0,5–2 эВ, материал является полупроводником. Количество элек- тронов в зоне проводимости зависит от ширины запрещенной зоны и температуры. Для получения необходимой проводимости полу- проводниковых кристаллов в них вводят легирующие элементы, что позволяет широко использовать полупроводниковые материалы для регистрации α-, β- и γ-излучений
Зарядочувстви- тельный преду- силитель	Charge sensitive preamplifier	Предусилитель, в котором для минимизации зависимости ам- плитуды от емкости детектора и обеспечения высокого отношения сигнал-шум интегрирование сигнала происходит не на емкости нагрузки, а на конденсаторе (с емкостью C_f) отрицательной обрат- ной связи усилителя. Амплитуда импульса на выходе зарядочув- ствительного предусилителя (ЗЧУ) равна $A_{\rm Bbix} \approx q/C_f$, где q – за- ряд; образующийся при регистрации частицы. Подразделяются на ЗЧУ с резистивной, оптической импульсной и транзисторной им-

		пульсной обратными связями, предназначенными для обеспечения разряда конденсатора после регистрации частицы во избежание вы- хода за пределы <i>динамического диапазона</i>
Защита многослойная	Graded shield	См. многослойная защита детектора
Идентификация радионуклида	Identification of radionuclide	Однозначное определение радионуклида по периоду полураспа- да и энергетическому спектру излучения, которые присущи только этому нуклиду. Точность идентификации зависит от используемой измерительной аппаратуры, прежде всего, от эффективности и энергетического разрешения спектрометра. Содержание радио- нуклида (активность, масса) в пробе определяют с погрешностью, зависящей от характеристик спектрометра и метода обработки экс- периментальных спектров
Изотопы	Isotopes	Разновидности данного химического элемента (т.е. имеющие одинаковый атомный номер, или заряд ядра Z) с различной массой ядер. Изотопы бывают стабильными и радиоактивными. Стабильные изотопы имеются только у элементов с зарядом ядра не более 83. Большее количество стабильных изотопов имеется у элементов с четным Z
Импеданс коаксиального кабеля	Impedance of coaxial cable	Величина, зависящая от емкости <i>C</i> и индуктивности <i>L</i> кабеля единичной длины и имеющая размерность электрического сопротивления (Ом). Характеристический импеданс определяется по

		формуле $Z_0 = \frac{U}{I} = \sqrt{\frac{L}{C}}$. Его можно найти, зная геометрические параметры кабеля (d_1 , d_2 – диаметры кабеля и его центральной жилы соответственно) и физические константы используемого диэлектрика: $Z_0 = 60\sqrt{\frac{K_m}{K_e}} \ln \frac{d_2}{d_1}$, где K_m и K_e – относительные магнитная и диэлектрическая проницаемости диэлектрического слоя соответственно. В стандарте НИМ используются кабели с характеристическими импедансами, равными 50 и 93 Ом
Интегральная нелинейность	Integral nonlinearity, INL	Интегральная нелинейность (ИН) усилителя – степень отклонения реальной характеристики преобразования от идеальной (прямой линии), выраженная в %. ИН $\left(\eta = \frac{\Delta A_{\text{вых. max}}}{A_{\text{вых. max}}}\right)$, искажающая энергетическую калибровку спектрометра, не должна превышать погрешность определения энергии частиц, зависящую от используемого детектора. ИН АЦП аналогична ИН усилителя

Интегрирую- щая цепочка	Integrator, low-pass filter	Фрагмент электрической цепи, содержащий резистор R_I и емкость C_I – фильтр, который ослабляет высокочастотный компонент и практически не затрагивает низкочастотный. Постоянная времени интегрирующей цепи равна $\tau_I = R_I C_I$ и определяет время нарастания выходного сигнала с амплитудой А от 0 до 0,63А. Длительность импульса на входе <i>RC</i> -цепи должна быть больше ее постоянной времени
Интерполяци- онный сплайн	Interpolated spline	Функция, значения которой совпадают с имеющимися экспери- ментальными точками, и выполняются условия непрерывности са- мой функции, ее первых и вторых производных. Наиболее часто используется кубическая функция (кубический ИС), на которой до- стигается минимум функционала кривизны интерполяционной функции
Ионизационная камера	Ionizing chamber	Газонаполненный детектор ионизирующих излучений, в объеме которого размещены два (катод и анод) или три (катод, анод и сет- ка) электрода. Ионизационная камера (ИК) имеет плоскую и цилин- дрическую конфигурации. В цилиндрической ИК один электрод представляет собой нить на оси цилиндра, а второй – боковую по- верхность цилиндра. Сетка необходима для исключения индукци- онного эффекта. Энергия частицы или кванта идет на образование носителей за- рядов – электронов и положительных ионов чувствительного объе-

		ма ИК (газа, сжиженного газа). Средняя энергия ионообразования ИК составляет около 30 эВ. Подвижность электронов на три поряд- ка выше подвижности ионов, поэтому в формировании импульса тока последние не принимают участия. Время сбора зарядов (по- рядка мкс) зависит от подвижности, межэлектродного расстояния и приложенного напряжения смещения. ИК используются в основном в спектрометрии заряженных частиц. Для гамма-излучения исполь- зуется ИК со сжатым ксеноном
Ионизационная камера с сеткой	Gridded ioniza- tion chamber, Frisch-grid detector	Ионизационные камеры из-за большой средней длины свободно- го пробега в газах практически не применяются в гамма- спектрометрии, но используются для исследования энергетических спектров альфа-излучения. Для исключения влияния места взаимо- действия излучения с молекулами газов на форму сигнала (индук- ционного эффекта) используются ионизационные камеры с сеткой (ИКС), куда альфа-частицы попадают только в пространство между катодом и сеткой, на которой поддерживается промежуточный по- тенциал. Сетка практически прозрачна для электронов, которые (без участия ионов с подвижностью, на три порядка более низкой) фор- мируют импульс с амплитудой, пропорциональной поглощенной энергии частицы в чувствительном объеме ИКС. Энергетическое разрешение детектора на основе ИКС уступает полупроводниковым детекторам из-за относительно высоких, по сравнению с полупроводниками, энергий ионообразования (35–

		40 кэВ). Если источник размещен внутри ИКС, абсолютная эффек- тивность регистрации близка к 50 %
Ионизационное торможение	Ionization braking	Основной механизм потери энергии тяжелой заряженной части- цей (например, альфа-частицей, протоном, тритоном) или один из механизмов потери энергии электроном при их прохождении через вещество. Энергия может теряться вследствие неупругого кулонов- ского взаимодействия с атомами, приводящего к ионизации и воз- буждению атомов, а также вследствие упругих взаимодействий с ядрами. Потеря энергии при ионизации – процесс непрерывный, при этом движение тяжелой заряженной частицы в среде практически прямолинейно. При ионизационном торможении электрона его тра- ектория далека от линейной из-за равенства масс и зарядов взаимо- действующих частиц
Ионизирующее излучение	Ionizing radiation	Субатомные частицы (альфа-, бета-частицы и нейтроны), части- цы, образующиеся при взаимодействии космического излучения с атмосферой Земли (мезоны и др.), и электромагнитные волны, об- ладающие достаточной энергией для ионизации атомов или моле- кул. Гамма-, рентгеновское излучение и высокоэнергетическая об- ласть ультрафиолетовой части электромагнитного спектра являются ионизирующим излучением (ИИ). Граница между ионизирующим и неионизирующим излучениями резко не определена и находится между 10 и 33 эВ. ИИ также получают с помощью рентгеновских

		трубок, ускорителей частиц и деления ядер. ИИ подразделяют на непосредственно ионизирующие (заряженные частицы) и косвенно ионизирующие излучения (электрические нейтральные – фотоны, нейтроны и др.). Первые ионизируют вещества главным образом за счет кулоновского взаимодействия с электронами атомов, вторые – вследствие вторичных эффектов, к которым относятся фотоэффект, комптоновское рассеяние, парообразование (для фотонов), упругое и неупругое взаимодействие с ядрами (для нейтронов)
Ионно- имплантиро- ванный крем- ниевый ППД	Ion implanted silicon detector	Ионно-имплантированный кремниевый полупроводниковый де- тектор (ИИД) изготавливают, облучая поверхность кремния пучком ускоренных ионов (технология ионной имплантации). В кристалли- ческом кремнии после бомбардировки ионами бора образуется слой материала <i>p</i> -типа, сформированный вблизи поверхности. ИИД можно изготовлять с тонким входным окном для увеличения энер- гетического разрешения и повышения эффективности регистрации альфа- и бета-излучений. К классу ИИД относятся детекторы PIPS®
Источник ионизирующих излучений	Ionizing radiation source	Объект, содержащий радиоактивный материал или техническое устройство, испускающее или способное при определенных услови- ях испускать ионизирующее излучение. Под объектом понимается, в зависимости от масштабов, как установка в целом (ядерный реак- тор, ускоритель, нейтронный генератор и др.) или ее часть (актив- ная зона, теплоноситель и др.), так и пробы, содержащие радиоак- тивность и находящиеся в жидком, твердом или газообразном со-

		стоянии. Источники ионизирующих излучений (ИИИ) могут быть закрытыми, в которых выход радиоактивных веществ за пределы источника невозможен, и открытыми. Активность ИИИ, содержа- щих радионуклиды, может меняться в широких пределах: от значе- ний, сопоставимых с радиационным фоном (пробы почвы, воды и воздуха в контролируемой зоне АЭС), до высоких значений, ис- ключающих нахождение персонала вблизи источника (бочки с вы- сокоактивными отходами, облученные твэлы и др.). Для спектро- метрических измерений используют различные детекторы, оптими- зированные для работы с конкретными источниками в зависимости от их типов, радионуклидного состава и активности
Источник нейтронов	Neutron source	Любое устройство, испускающее или способное испускать нейтроны и используемое в научных исследованиях, ядерных тех- нологиях, медицине, биологии, химии, в ядерном оружии. Источни- ки нейтронов (ИН) характеризуются несколькими факторами: раз- мерами (значимостью), интенсивностью (н/с), энергетическим спек- тром, угловым распределением нейтронов, режимами испускания (непрерывный или импульсный). Среди основных ИН – ядерный реактор, основанный на делении тяжелых ядер; термоядерные уста- новки, основанные на синтезе легких ядер (<i>fusion systems</i>); системы, генерирующие нейтроны при взаимодействии ускоренных протонов с тяжелыми ядрами мишени (<i>spallation systems</i> , SNS); системы, ос- нованные на фотоядерных реакциях взаимодействия высокоэнерге-

		тического тормозного излучения с мишенями (electron bremsstrahlung/photofission); устройства, основанные на реакции D- T синтеза в короткоживущей плазме, создаваемой при электромаг- нитном сжатии и ускорении (dense plasma focus, DPF); устройства, в которых нейтроны испускаются при взаимодействии ускоренных легких ионов с дейтериевыми, литиевыми и другими мишенями (light ion accelerators); нейтронные генераторы на основе реакции ² D + ³ T \rightarrow ⁴ He + <i>n</i> + 17,6 MэB (neutron generators); радиоизотопные источники (radioisotope sources) на основе (α , <i>n</i>) и (γ , <i>n</i>) реакций, на основе спонтанного деления (²⁵² Cf) и др. Эти ИН различаются как по перечисленным выше факторам, так и по выходу нейтронов на единичное инициирующее событие (частица, акт деления)
Каскадное суммирование	True coincidence summing, TCS	См. Пик каскадного суммирования
Классификация нейтронов по энергиям	Neutron energy classification	Условное разделение энергетического спектра нейтронов на группы в соответствии с характером взаимодействия нейтрона энергии E с веществом, поглощающим и рассеивающим нейтроны. К основным энергетическим группам относят медленные (до 1 кэВ), промежуточные (1–200 кэВ) и быстрые (более 200 кэВ) нейтроны. Медленные нейтроны, в свою очередь, подразделяют на холодные (менее 0,005 эВ), тепловые (0,005–0,5 эВ) и надтепловые (0,5–1000 эВ). Средняя энергия тепловых нейтронов при $T = 293$ К равна

		0,025 эВ, а их энергетический спектр описывается распределением Максвелла. Быстрые нейтроны с энергией примерно до 20 МэВ
		можно считать нерелятивистскими, а при энергиях более 20 МэВ (сверхбыстрые нейтроны) их скорость сопоставима со скоростью света. В области промежуточных нейтронов сечение взаимодей- ствия сильно меняется в зависимости от энергии (носит резонанс-
		ный характер), причем энергетический диапазон, характерный для резонансов, зависит от заряда ядра и смещается в более мягкую область с его ростом
		Классификация нейтронов различается у разных авторов и как правило определяется конкретными задачами. В некоторых случаях выделяют кадмиевые нейтроны (поглощаемые Cd) в отдельную группу. Энергии нейтронов ядерных реакторов (<i>pile neutrons</i>) нахо- дятся в диапазоне примерно от 0,001 эВ до 15 МэВ
Коллимация альфа- излучения	Collimation of alpha-particles	Метод уменьшения FWHM за счет размещения между плоским источником альфа-излучения и детектором коллиматора – плоской пластины с одинаковыми регулярно расположенными каналами перпендикулярно плоскостям источника и детектора. Использование коллиматора позволяет существенно уменьшить хвосты пиков слева от максимумов и, следовательно, улучшить энергетическое разрешение. Вместе с тем, при коллимации за счет отсечения некоторых частиц эффективность регистрации снижается. Форму, диаметр и длину канала находят расчетным путем при заданной эффек-

		тивности регистрации конкретного детектора и параметров измеря- емого образца
Комптоновский континуум	Compton continuum, Compton plateau	Область спектра гамма-излучения в энергетическом диапазоне от 0 до комптоновского края. Комптоновский континуум вносит основной вклад в собственный фон измеряемого образца, содержа- щего гамма-излучающие радионуклиды
Комптоновский край	Compton edge	Асимметричный пик в энергетическом спектре гамма-излучения, соответствующий максимальной энергии однократно рассеянных вследствие эффекта Комптона гамма-квантов, равной $E_{\gamma} - \frac{E_{\gamma}}{1 + \frac{2E_{\gamma}}{m_e c^2}}$
Комптоновский спектрометр	Compton spectrometer	Спектрометр, состоящий из кристалла-анализатора небольшого размера (во избежание многократного рассеяния), в котором реги- стрируются коллимированные гамма-кванты, и управляющего кри- сталла, регистрирующего гамма-кванты, рассеянные под опреде- ленным углом вследствие эффекта Комптона. Амплитудный анализ производится только в случае совпадений импульсов от двух кри- сталлов. Существует однозначная зависимость между углом рассеяния кванта и энергией комптоновского электрона. В приборном спектре, получаемом с кристалла-анализатора, каждой гамма-линии падаю-

		щего кванта (E_{γ}) соответствует пик (E_e) , образованный при регистрации комптоновских электронов. Если угол рассеяния θ близок к π , рассеянному комптоновскому электрону передается наибольшая доля энергии. Для получения максимального сигнала в комптоновском спектрометре (КС) направление рассеяния гамма-квантов близко к π . В этом случае зависимость энергии электрона от угла рассеяния очень слабая, и можно считать, что $E_e \approx E_{\gamma} - \frac{m_e c^2}{2}$. КС в настоящее время используются в фундаментальных исследованиях
Комптоновское плато	Compton continuum, Compton plateau	См. Комптоновский континуум
Комптоновское рассеяние	Compton scattering	Некогерентное рассеяние фотона на свободном или слабо связанном с ядром электроне, в результате которого часть кинетической энергии фотона с длиной волны λ передается электрону, а длина волны рассеянного фотона λ' определяется по формуле $\lambda' - \lambda = \lambda_C (1 - \cos \theta)$, где $\lambda_C = \hbar/(m_e \cdot c) = 0,02426$ Å – комптоновская длина волны. Полная передача энергии от фотона к электрону при комптоновском рассеянии (КР) невозможна. Энергия комптоновского электрона максимальна при $\theta = \pi$. Атомарное сече-

		ние взаимодействия при КР пропорционально атомному номеру вещества. При малых энергиях сечение КР приблизительно посто- янно, а при больших – обратно пропорционально энергии падающе- го кванта. Сечение КР описывается формулой Клейна-Нишины. Рассеянный вследствие эффекта Комптона фотон может претерпеть повторное, в том числе многократное рассеяние. Вследствие этого участок энергетического спектра между пиком полного поглощения и комптоновским краем может быть заполнен
Конверсионная эффективность сцинтиллятора	Conversion efficiency	Отношение суммарной энергии фотонов (энергии световой вспышки), ε_{cB} , к поглощенной в сцинтилляторе энергии частицы, $E: \eta_k = \frac{\varepsilon_{cB}}{E} = \frac{N_{\phi}hv}{E}$, где N_{ϕ} – количество фотонов с энергией hv (средняя энергия одного фотона). В идеальном сцинтилляторе кон- версионная эффективность (КЭ) не зависит от энергии и вида реги- стрируемых частиц, т.е. является постоянной величиной. В этом случае интенсивность световой вспышки прямо пропорциональна энергии, потерянной частицей в сцинтилляторе. В действительно- сти КЭ зависит от удельных потерь энергии, dE/dx , которая, в свою очередь, определяется типом частицы и ее характеристиками
Коэффициент ослабления линейный	Linear attenuation coefficient	Макроскопическое эффективное сечение взаимодействия фото- нов с веществом, определяемое из выражения $\mu_l = \rho \frac{N_A}{A} \sigma$, где ρ –

		плотность материала; N_A – число Авогадро; A – атомная масса ма- териала, σ – микроскопическое сечение взаимодействия. Нерассе- янные гамма-кванты, проходя через слой вещества толщиной L , ослабляются по закону $I = I_0 e^{-\mu_l L}$, где I и I_0 – интенсивность про- шедшего слой и падающего на него гамма-излучения соответствен- но. Имеет размерность см ⁻¹
Коэффициент ослабления массовый	Mass attenuation coefficient	Отношение линейного коэффициента ослабления к плотности вещества. Массовый коэффициент ослабления (МКО) имеет раз- мерность см ² /г. МКО материала со сложным химическим составом равен $\mu = \sum_{i} \mu_{i} w_{i}$, где индекс суммирования относится к <i>i</i> -му хи- мическому элементу с массовой долей w_{i}
Коэффициент усиления	Amplifier gain	Отношение амплитуды выходного сигнала (напряжения, тока) усилителя к амплитуде соответствующего входного сигнала. Вели- чина коэффициента усиления должна быть постоянной в динамиче- ском диапазоне спектрометрического усилителя
Кремниевый детектор	Silicon detector	Класс полупроводниковых детекторов ионизирующих излуче- ний на основе кремния. К нему относятся поверхностно-барьерные, в том числе полностью обедненные детекторы, диффузионно- дрейфовые (на основе Si <i>p</i> -типа, легированного Li), ионно- имплантированные и др. Используются для спектрометрии рентге- новского излучения, легких и тяжелых заряженных частиц, при ре-

		гистрации нейтронов. Эксплуатируются при температурах окружающей среды. Напряжение питания большинства детекторов не превышает 300 В
Кремниевый фотоэлектрон- ный умножи- тель, Si-ФЭУ	Silicon photo- multiplier, SiPM	Микропиксельный лавинный фотодиод, работающий в гейгеров- ском режиме и предназначенный для счета фотонов. Каждый пик- сель устройства создает импульсный выходной сигнал при обнару- жении единичного фотона. Общий выходной сигнал Si-ФЭУ пред- ставляет собой сумму выходных сигналов с каждого пикселя. Изоб- ретен в СССР в 1989 г. Si-ФЭУ представляют собой альтернативу традиционным стеклянным ФЭУ в широком круге задач, предъяв- ляющих повышенные требования к высокой чувствительности и регистрации слабых световых сигналов в диапазоне длин волн от 300 до 1000 нм
Кривая Брэгга	Bragg curve	График зависимости удельной ионизации, пропорциональной тормозной способности вещества, от пути, пройденного в среде тя- желой заряженной частицей (альфа-частицей, протоном). Тормоз- ная способность возрастает к концу пробега частицы (при умень- шении ее скорости) и затем резко падает до нуля. На кривой Брэгта пик, обусловленный ростом сечения взаимодействия заряженной частицы с атомами среды при снижении скорости частицы, называ- ется <i>пиком Брэгга</i> . В ядерной медицине при планировании облуче- ния протонами обеспечивают наибольшее энерговыделение, соот- ветствующее пику Брэгга, в области новообразования. Пик Брэгта

		можно искусственно расширить до плато с помощью механических поглотителей, обеспечивающих требуемое энергетическое распре- деление заряженных частиц перед входом в среду
Кривые трансмиссии	Transmission curves	Пробег определяют экспериментально, измеряя количество за- ряженных частиц, прошедших слой вещества, в зависимости от толщины слоя. Полученную таким способом зависимость числа за- регистрированных частиц от толщины слоя вещества называют <i>кри- вой трансмиссии (КТ)</i> . Если пробег существенно превышает тол- щину слоя, количество прошедших частиц не меняется с ростом толщины, но при приближении толщины к величине среднего про- бега это количество начинает уменьшаться. Средний пробег соот- ветствует точке перегиба наклонной части КТ
Критическая энергия электрона	Critical energy of electron	Ионизационные потери электронов растут при высоких энергиях пропорционально логарифму энергии, а радиационные – быстрее (пропорционально энергии). При определенном значении энергии, называемой <i>критической</i> (КЭ), радиационные и ионизационные потери сравниваются: $\left(\frac{dE}{dx}\right)_{ion} = \left(\frac{dE}{dx}\right)_{rad}$, а затем начинают преобладать радиационные потери. Если Z – заряд среды, то КЭ (в МэВ) примерно равна 800/Z. Для Рb КЭ составляет около 10 МэВ.

Критический	Crirical level,	Величина, позволяющая определить, является ли полезный сиг-
уровень	L_C	нал, полученный при измерении, статистически значимым, или
		имеется ли в измеряемой пробе такое количество радиоактивного
		вещества, которое при регистрации детектором создает полезный
		сигнал (за вычетом фона), среднее значение которого превышает
		заданный уровень флуктуации фона. Утверждение о наличии или
		отсутствии полезного сигнала может быть сделано только в рамках
		вероятностного подхода. При уровне значимости $\alpha = 0.05$ величину
		критического уровня, также называемой порогом распознавания,
		можно определить по формуле $L_C = 2,33\sqrt{B}$, где B – измеренный
		фон (в предположении, что фоновые события распределены по за-
		кону Пуассона). Существуют и другие расчетные формулы
Линейная	Linear stopping	Свойство поглощающей среды (вещества) – средняя энергия, те-
тормозная	power	ряемая заряженной частицей на единичном пути за счет ионизаци-
способность		
		онных и радиационных потерь, равная $-\frac{dx}{dx}$. Без учета радиацион-
		ных потерь линейная тормозная способность пропорциональна
		квадрату заряда частицы, концентрации электронов в среде и функ-
		ции скорости: $-\frac{dE}{dx} \sim z^2 n_e \varphi(v)$, где $\varphi(v) \sim \frac{1}{v^2}$
Линейчатый	Line spectrum	Спектр, состоящий из отдельных спектральных линий, каждая из
спектр		которых по форме близка к дельта-функции. Типичный пример –

		спектр гамма-излучения радионуклида, расположения линий которого на энергетической шкале определяются разностями между энергетическими уровнями ядра. Естественная ширина линии определяется из соотношения неопределенности Гейзенберга и на много порядков меньше, чем ширина линии, наблюдаемой в спектрометрах ионизирующих излучений. К линейчатым также относятся спектры конверсионных электронов, спектры характеристического рентгеновского излучения атома, спектры альфа-излучения
Массовая тормозная способность	Mass stopping power	Отношение линейной тормозной способности к плотности среды: $-\frac{1}{\rho}\frac{dE}{dx}$. При ионизационных потерях энергии массовая тормозная способность приблизительно постоянна для всех сред, так как и плотность, и $\frac{dE}{dx}$ пропорциональны атомному номеру
Медиана распределения	Median of distribution	Значение случайной величины (аргумент функции распределе- ния), соответствующее значению функции распределения, равной 0,5. Если рассматривается счетное распределение (например, рас- пределение электронов по энергиям), то количество электронов с энергией, меньшей ее медианного значения, равно количеству элек- тронов с энергией, равной или большей ее медианного значения. При рассмотрении массового распределения масса всех частиц с диаметром меньшим, чем массовый медианный диаметр, равно мас-

		се частиц, диаметры которых превышают медианное значение. Совпадает с понятием <i>центроиды</i> (геометрического центра) слу- чайной величины. В симметричном распределении значения моды и медианы совпадают
Мертвое время	Dead time	Временной промежуток после момента регистрации события, в течение которого детектор или спектрометр не в состоянии реги- стрировать последующие события. Вследствие ненулевого мертвого времени при высоких интенсивностях потока входных событий (ча- стиц или квантов) часть информации теряется
Метод анали- тической ин- терполяции для определения ширины пика	Determination of peak width using analytical interpolation	Процедура, позволяющая оценить ширину пика на уровне <i>k</i> -й части его высоты. Координаты точек по оси <i>x</i> пересечения пика линией на высоте, составляющей <i>k</i> -ю часть слева и справа от максимума пика, равны, соответственно, $x_L = \frac{ky_p - y_1}{y_2 - y_1} + x_1$ и
		$x_H = \frac{y_3 - ky_p}{y_3 - y_4} + x_3$, где y_i – число отсчетов в <i>i</i> -м канале; y_p – мак- симальное число отсчетов в области пика; x_1, x_2 – каналы ниже и выше x_L , соответственно, x_3, x_4 – каналы ниже и выше x_H , соот- ветственно. Полная ширина пика на уровне <i>K</i> от максимума равна $FWKM = x_H - x_L = (x_3 - x_1) + \frac{y_3 - ky_p}{y_3 - y_4} - \frac{ky_p - y_1}{y_2 - y_1}$.

		Метод используют для поиска ширины симметричных пиков. При невысокой точности измерений используют процедуру предва- рительного сглаживания данных
Метод линеа- ризации гаус- сиана для опре- деления пара- метров пика	Determination of peak pa- rameters by a linearized Gaussian fit	Функция $Q(x) = \ln \frac{y(x-1)}{y(x+1)} = \frac{2}{\sigma^2}x - \frac{2x_0}{\sigma^2}$, где $y(x)$ – нормальное распределение (из экспериментального спектра вычтен фон), является линейной. Связь параметров нормального распределения с параметрами линеаризующей гауссиан функции $Q(x)$ находят, используя взвешенный метод наименьших квадратов. С помощью критерия χ^2 проверяют соответствие гауссиану экспериментальных точек. Из линейной функции также находят полуширину пика и оценивают площадь пика полного поглощения
Метод моментов	First and second- moments methods	Положение максимума пика (центроиды распределения) опреде- ляется по формуле $\overline{x} = \frac{\int_{x_1}^{x_2} xy(x) dx}{\int_{x_1}^{x_2} y(x) dx} = \frac{\sum x_i y_i}{\sum y_i}$, где x_1 и x_2 – границы области пика, y_i – отсчет в канале x_i . Для суммирования с прием- лемой точностью достаточно выбрать диапазон $[x_1, x_2]$, равный утроенной величине <i>FWHM</i> . При ассиметричном пике рассчитан- ный первый момент не будет совпадать с центроидой гауссиана.

		Процедура определения полуширины выполняется после определения центроиды. Метод основан на том, что величина <i>FWHM</i> равна 2,355 (σ – среднеквадратичное отклонение плот- ности распределения), а оценку величины σ находят по формуле $\sigma^{2} = \frac{\int_{-\infty}^{\infty} (x - x_{0})^{2} y(x) dx}{\int_{-\infty}^{\infty} y(x) dx} \approx \frac{\sum (x_{i} - x_{0})^{2} y_{i}}{\sum y_{i}}.$
		Процедура подходит и для ассиметричных пиков, так как апри- орная информация о виде распределения не используется. Перед применением метода вторых моментов необходимо на участке спектра шириной не менее 3 <i>FWHM</i> вычесть фон
Метод наименьших квадратов (МНК)	Least square method	Один из наиболее эффективных методов поиска неизвестных параметров регрессионных моделей по экспериментальным дан- ным. Используется как в линейных, так и в нелинейных моделях, описывающих связанные со спектрометрией проблемы: энергетиче- ская калибровка спектрометров, аппроксимация и расшифровка экспериментальных спектров и т.п. Для использования МНК прин- ципиально важно, чтобы число экспериментальных точек было больше, чем число неизвестных параметров. Искомые параметры модели ищутся из условия минимума функционала – суммы квадра- тов отклонений между данными эксперимента и линейной комби-

		нацией базисных функций при этих параметрах. Линейная класси- ческая МНК-оценка является несмещенной, состоятельной и эффек- тивной
Метод подгон- ки параболизи- рованным гауссианом для определения параметров пика	Determination of peak parameters by a parabolized Gaussian fit	Натуральный логарифм гауссиана равен $\ln(y) = c_0 + c_1 x + c_2 x^2$, где $c_0 = \ln y_0 - \frac{x_0^2}{2\sigma^2}$; $c_1 = \frac{x_0}{\sigma^2}$; $c_2 = -\frac{1}{2\sigma^2}$. Процедура поиска цент- роиды состоит в определении постоянных коэффициентов параболы с помощью взвешенного метода наименьших квадратов по экспе- риментальным парам точек $(x_i, \ln y_i)$. Фон вычтен. Для проверки соответствия данных нормальному распределению применяется критерий хи-квадрат. Из параболической функции также находят
		полуширину пика и оценивают площадь пика полного поглощения
Метод произ- водных (метод Марискотти)	Mariscotti's method	Если представить энергетический спектр непрерывной функци- ей, то ее производные ведут себя одинаково на характерных участ- ках: вне области пика производные гауссиана равны нулю, а вблизи его максимума характерное поведение производных позволяет определить местоположение пика и его ширину. Метод <i>производ- ных</i> основан на численном дифференцировании гамма-спектров, измеренных с помощью ППД (<i>М.А. Mariscotti</i> , 1967). Для поиска пиков использованы вторые конечные разности. Предполагается,

		что искомый пик за вычетом фона описывается распределением Гаусса, а сам фон линеен. В методе <i>первой производной</i> постулируют наличие пика в области <i>i</i> -го канала при положительной производной слева, отрицательной справа и равенстве нулю в максимуме. В методе <i>вторых производных</i> критерием наличия пика является положительность вторых производных слева и справа от максимума, а в самом максимуме значение второй производной отрицательно. Метод применяется только для сглаженных спектров
Метод пяти каналов для определения положения пика	Determination of peak position by five-channel method	Метод основан на предположении гауссовой формы пика. Верх- нюю его часть можно аппроксимировать параболой, прологариф- мировав гауссиан и разложив полученную функцию в ряд Тейлора вблизи максимума пика. Для нахождения центроиды пика исполь- зуется формула, связывающая пять соседних каналов:
		$x_0 = x_m + \frac{y_{m+1}(y_m - y_{m-2}) - y_{m-1}(y_m - y_{m+2})}{y_{m+1}(y_m - y_{m-2}) + y_{m-1}(y_m - y_{m+2})},$
		где m – номер канала с наибольшим числом отсчетов; y_i – число отсчетов в канале x_i за вычетом фона. Метод не слишком чувствителен к ассиметричным хвостам, но уступает методу моментов при обработке широких пиков, измеренных с низкой точностью

Метод	TDCR	Метод тройных-двойных совпадений (TDCR) позволяет непо-
тройных-	(triple to double	средственно определять эффективность регистрации жидкосцин-
двойных	coincidence	тилляционного спектрометра и, следовательно, абсолютную актив-
совпадений	ratio)	ность как альфа-, так и бета-излучателей. Эффективность вычисля-
		ется на основе физической и статистической моделей распределе-
		ния фотонов, испущенных сцинтиллятором. В TDCR используются
		три одинаковых ФЭУ, расположенных под углом 120°. Сигналы с
		каждого ФЭУ (1, 2 и 3) поступают на схемы совпадений с регистра-
		цией тройных совпадений (1-2-3) и трех типов двойных совпадений
		(1-2, 2-3 и 3-1). Метод основан на следующих гипотезах: 1) при вза-
		имодействии моноэнергетических электронов со сцинтиллятором
		число испускаемых фотонов подчиняется распределению Пуассона.
		Вероятность эмиссии х фотонов равна (при среднем их числе <i>m</i>)
		$P(x/m) = \frac{m^x}{m!}e^{-m}$. Величина <i>m</i> зависит от поглощенной энергии:
		(T) 2) 1
		m = m(E); 2) фотоны равномерно распределены в оптической каме-
		ре счетчика и выбивают фотоэлектроны в фотокатоде ФЭУ, количе-
		ство которых также подчинено распределению Пуассона со сред-
		ним значением vm (v – вероятность образования фотоэлектрона):
		$P(y/vm) = \frac{(vm)^x}{y!}e^{-vm}$; 3) вероятность регистрации хотя бы одного

ость
Va
K0-
сти-
от 1
пре-
м.
$\frac{\varepsilon_T}{\varepsilon_D},$
улы
ль и
зна-
ко- зиях
пре-
стод
λ

Минимальная детектируемая активность (МДА)	Minimum detectable activity, <i>MDA</i>	Минимальное количество радионуклида, которое можно уверен- но зарегистрировать с помощью конкретного детектора при задан- ной геометрии измерений. МДА зависит от величины фона стати- стической природы, времени измерений, свойств детектора и изме- ряемого образца, геометрии измерений и схемы распада нуклида. МДА вычисляется так же, как и удельная активность нуклида, но количество импульсов в информативном пике (например, в пике полного поглощения) заменяется на величину уровня детектирова- ния $L_D: MDA = \frac{2,71+4,65\sqrt{N_BT}}{V_C T \varepsilon}$, где N_B – скорость счета фона (имп/с); ε – эффективность регистрации (значения от 0 до 1); T – время измерения (при условии одинакового времени измерения фо- на и образца), с; V_C – объем образца. Иногда эту величину, называ- ют MDA_{95} . МДА часто используется как один из показателей каче- ства спектрометра (<i>FoM, figure of merit</i>), и различные установки сравниваются между собой исходя из величин МДА. Если опреде- ленная активность нуклида A оказывается меньше МДА, в протоко- лах измерений это фиксируется как $A < MДA$ без приведения вели-
		лах измерений это фиксируется как $A < {\rm MДA}$ без приведения величины $A \pm \Delta A$
Многоканаль- ный анализатор импульсов	Multi-channel analyzer, MCA	Электронный блок, предназначенный для анализа распределений импульсов. Многоканальный анализатор сортирует по амплитудам и накапливает импульсы от зарегистрированных частиц или кван-

		тов, поступающих со спектрометрического усилителя, с целью цифрового и визуального представления спектра, полученного с помощью детектора
Многокри- стальный спектрометр	Multi-crystal spectrometer	Спектрометр, в котором для повышения информативности изме- рений используется несколько детекторов. Это позволяет либо су- щественно уменьшить комптоновский фон, либо получить инфор- мацию из анализа иных пиков, а не только пиков полного поглоще- ния. Во всех многокристальных спектрометрах активно использу- ются электронные схемы совпадений и антисовпадений, линейные ворота и др. Общим недостатком МС является их невысокая эффективность регистрации из-за специально подобранного кристалла-анализатора небольшого размера. В настоящее время спектрометры антисовпа- дений (с кольцевым охранным сцинтиллятором) используются для низкофоновых измерений, а комптоновские и парные спектромет- ры – в основном, в поисковых исследованиях (физика высоких энергий, космические излучения, измерения сечений реакций и т.п.)
Многослойная защита детектора	Graded shield	Защита детектора, выполненная из нескольких слоев различных материалов, поглощающих излучение. В гамма-спектрометрии используется свинец (основной материал для защиты от внешнего фона). Гамма-излучение исследуемого образца возбуждает в свинце характеристическое рентгеновское излучение (ХРИ), которое создает дополнительный фон – линии 72 и 74 кэВ. Для их поглощения

		точником ХРИ с линией 23 кэВ, которое поглощается медным сло- ем. ХРИ меди составляет примерно 8 кэВ и не является серьезным мешающим фактором при измерениях. Кроме упомянутых материа- лов, в защитных конструкциях используют железо и олово. Компо- новка защиты детектора зависит от интенсивности внешнего фона (в том числе, нейтронного), требуемой точности, необходимости снижения доли комптоновского рассеяния, от стоимости материа- лов защиты и ее конструкции. Например, трехслойная защита из 100 мм свинца, 0,5–1 мм кадмия и 1–2 мм меди не является опти-
		мальной с точки зрения эффективности поглощения гамма-квантов, но существенно дешевле других комбинаций
Мода распределения	Mode of distribution	Значение случайной величины, соответствующее наибольшей величине плотности распределения вероятности. Распределение с одной модой называется унимодальным, с двумя и более модами – бимодальным и полимодальным соответственно. Наличие несколь- ких мод свидетельствует о нескольких источниках, формирующих распределение
МОКС-топливо	<i>MOX</i> (Mixed Oxide) U-Pu fuel	Ядерное топливо, содержащее диоксиды плутония (Pu) и обед- ненного или природного урана (U). Изотопный состав Pu в МОКС- топливе соответствует изотопному составу Pu, содержащемуся в отработавшем ядерном топливе (ОЯТ), выгружаемом из легковод- ных энергетических ядерных реакторов. Для МОКС-топлива воз-

		можен вариант использования Ри из ОЯТ промышленных реакторов. Для получения МОКС-топлива 6–10 % Ри из ОЯТ смешивают с 90–94 % U. Так как массовое содержание ²³⁵ U в МОКС-топливе не превосходит 1 %, в нем основная энергия выделяется при делении ядер Ри
Моменты распределения случайной величины	Moments of distribution of random variable	Числовые характеристики случайной величины. Начальный мо- мент <i>s</i> -го порядка случайной величины <i>X</i> называется <i>математиче- ским ожиданием s</i> -й степени этой величины: $\alpha_s[x] = M[x^s]$. Центральный момент <i>s</i> -го порядка случайной величины <i>X</i> назы- вается <i>математическим ожиданием</i> центрированной величины <i>X</i> <i>s</i> -й степени: $\alpha_s[X] = M[X^2]$, где $X = x - M[x]$. Метод моментов для нахождения центроиды пика и его полуши- рины основан на численном определении начального момента пер- вого порядка и центрального момента второго порядка по данным эксперимента
Моноэнергети- ческий спектр	Monoenergetic spectrum	Разновидность линейчатого спектра, состоящего из единствен- ной линии. Например, спектр гамма-излучения ¹³⁷ Cs, наблюдаемый в спектрометрах, состоит из единственной линии 661,6 кэВ, хотя в схеме распада присутствуют и другие энергетические линии
Мультиплет	Multiplet	 Группа близко расположенных спектральных линий, образованных расщеплением энергетического уровня ядра (атома). Близко расположенные энергетические линии гамма- или
		альфа-спектров, расстояние между которыми меньше энергетиче- ского разрешения спектрометра. Вследствие этого разрешение мультиплета требует специальных математических приемов. Критериями наличия мультиплета в спектре являются: 1) значи- мое отличие полуширины анализируемого пика от известного зна- чения <i>FWHM</i> , полученного из калибровки; 2) асимметрия пика, об- разовавшаяся вследствие сложения одиночных пиков с разными интенсивностями
--	---------------------------	--
Напряжение смещения	Bias	Постоянное напряжение, приложенное к электроду относитель- но опорного уровня для достижения требуемого режима по посто- янному току. В ППД к <i>p</i> -области прикладывается отрицательный, а к <i>n</i> -области – положительный потенциалы, что способствует рас- ширению чувствительной области детектора и эффективному сбору носителей зарядов обоих знаков, образующихся при поглощении излучения
Неорганиче- ские сцинтил- ляторы	Inorganic scintillator	Большая группа неорганических твердых веществ с кристалли- ческой структурой, т.е. состоящей из атомов, не связанных в обособленные молекулы. Под действием ионизирующего излучения часть электронов решетки переходит в зону проводимости или на возбужденные уровни. Энергия возбуждения мигрирует в кристалле за счет электронно-дырочной проводимости. Когда носители попа- дают в центры люминесценции, вследствие рекомбинационных процессов испускаются фотоны

Непрерывный спектр	Continuous spectrum	Спектр с граничными энергиями E_1 и E_2 , в пределах которых в каждой части энергетического диапазона ($E, E + dE$) имеется ненулевое количество частиц или фотонов. Примерами служат спектр бета-излучения, спектры тормозного излучения, комптоновского рассеяния и др.
Непродлеваю- щееся мертвое время	Non-expended (non-paralizied) dead time	В случае, если мертвое время (MB) не зависит от того, попала ли последующая частица во временной интервал после регистрации предыдущей частицы, оно называется <i>непродлевающимся</i> MB, (τ_{ne}), и после прихода сигнала вход закрывается на его величину. Для спектрометров с многоканальным анализатором отсчет непродлевающегося MB начинается в момент, когда выходной импульс усилителя превысит порог дискриминатора АЦП. MB складывается из времени нарастания импульса, небольшого фиксированного времени, необходимого для регистрации пика, времени блокировки, состоящего из времени передачи информации в память анализатора. При высокой скорости счета сигналов часть полезной информации теряется только из-за непродлевающегося MB спектрометра. Если за время $t >> \tau_{ne}$ регистрируются сигналы со скоростью счета N , а входная загрузка равна N_0 (скорость счета при MB = 0), то $N = \frac{N_0}{1+N_0\tau_{ne}}$. При регистрации пуассоновского потока событий

		просчеты принципиально неустранимы, так как события следуют друг за другом через случайные, в том числе сколь угодно малые временные интервалы
Нормальное распределение	Normal distribution	Случайная величина <i>E</i> описывается нормальным распределени- ем (HP) с параметрами <i>E</i> ₀ и σ, если плотность распределения равна $\Phi(E) = \frac{1}{\sqrt{2\pi} \cdot \sigma} e^{\frac{-(E-E_0)^2}{2\sigma^2}}.$
		Параметры НР (или распределения Гаусса) E_0 и σ – математиче- ское ожидание и среднее квадратичное отклонение случайной вели- чины <i>E</i> . Кривая плотности распределения имеет симметричный ко- локолообразный вид. Мода, медиана и математическое ожидание НР совпадают. НР принято аппроксимировать аппаратурные пики линейчатых спектров гамма-излучения. Для НР величина FWHM примерно равна 2,355 σ
Образование электрон- позитронных пар	Pair production	Пороговый эффект, возникающий при взаимодействии гамма- кванта с электромагнитным полем ядра. Эффект наблюдается при условии $E_{\gamma} > 2m_e c^2 = 1,022$ МэВ. В результате взаимодействия гамма-квант исчезает, передавая свою энергию (за вычетом 1,022 МэВ) рождающимся электрону и позитрону, а также ядру от- дачи (незначительная часть энергии). В чувствительной области

		детектора электрон и позитрон быстро замедляются. После потери кинетической энергии позитрон аннигилирует с электроном среды, в результате чего образуются два гамма-кванта с энергиями по 0,511 МэВ каждый. Сечение образования пар σ_p в поле ядра пропорционально квадрату заряда ядра и логарифму энергии гамма-квантов, а с увеличением энергии гамма-квантов зависимость сечения от энергии исчезает
Образцовые спектрометри- ческие источ- ники излучений	Sources for calibration	Специально изготовленные источники ионизирующих излучений известного состава и активности, предназначенные для калибровки детекторов. В РФ при калибровке детекторов гамма- излучений используют <i>образцовые спектрометрические гамма-</i> источники (ОСГИ) – набор точечных источников, изготовленных в виде дисков с радионуклидами в его центре, с энергиями испускае- мых гамма-квантов в широком диапазоне: от нескольких кило- элетронвольт до 2 МэВ. Изготавливают также объемные твердые и жидкие образцовые источники, в том числе содержащие сразу не- сколько нуклидов и нуклиды с большим набором линий: SRM-4275, содержащий ¹²⁵ Sb, ¹⁵⁴ Eu и ¹⁵⁵ Eu, излучающий 18 хорошо разрешае- мых линий в энергетическом диапазоне 27–1275 кэВ с известными интенсивностями, погрешность значений которых менее 1 % (NBS, США). В Великобритании для калибровки используют смесь из 12 нуклидов (материалы QCY и QCYK), испускающие гамма-кванты в диапазоне от 59,24 кэВ (²⁴¹ Am) до 1836,05 кэВ (⁸⁸ Y). Аналогичные

		российские источники, содержащие один или несколько нуклидов, поставляет АО «Изотоп». <i>Образцовые спектрометрические источники альфа-излучений</i> (ОСАИ) содержат изотопы урана, плутония и другие альфа- активные нуклиды. Источники получают методами радиохимиче- ского выделения требуемых нуклидов с заданной чистотой и их осаждения на поверхности металлических дисков. <i>Бета-активные</i> источники, используемые для калибровки бета-радиометров (ОРИБИ), содержат ¹⁴ С, ⁶⁰ Со, ⁶³ Ni, ⁹⁰ Sr- ⁹⁰ Y, ¹³⁷ Сs и др. Образцовые источники нейтронов создают для метрологическо- го обеспечения нейтронных измерений, выполняемых на конкрет- ной установке в рамках научных или технических задач
Обратное рассеяние электронов	Backscattering of electrons	Отражение части электронов, летящих в детектор, от его по- верхности. При выполнении измерений на бета-спектрометрах вследствие обратного рассеяния электронов (ОРЭ) от поверхности сцинтиллятора или ППД низкоэнергетическая часть спектра обога- щается. В случае калибровки с помощью образцовых спектромет- рических источников бета-излучения возможно ОРЭ от подложки препарата и увеличение доли частиц, достигающих чувствительной области детектора. Для снижения эффекта подложка должна состо- ять из вещества с низким Z
Объект исполь- зования атом-	Nuclear installation,	Ядерные установки, радиационные источники, пункты хранения ядерных материалов и радиоактивных веществ, хранилища радио-

ной энергии	Nuclear facilities	активных отходов (PAO), тепловыделяющие сборки ядерного реак- тора, в том числе облученные, ядерные материалы, радиоактивные вещества, радиоактивные отходы. Категории объектов использова- ния атомной энергии определяются сведениями, содержащимися в паспорте на объект, в проектной, конструкторской, технологиче- ской и эксплуатационной документации, а также исходя из крите- риев отнесения отходов к РАО
Оже-электрон	Auger electron	Электрон, которому передается избыточная энергия при снятии возбуждения атома, возникшего при образовании вакансии на од- ной из <i>внутренних атомных оболочек</i> , безызлучательным перехо- дом. Эффект обнаружен Р. Auger (1923). Вакансия возникает вслед- ствие фотоэффекта, внутренней конверсии, при электронном захва- те ядром (бета-распад) и других процессов. Эффект Оже наблюда- ется преимущественно в легких атомах при энергиях связи электро- на, не превышающей 1 кэВ.
		Изоыточная энергия может оыть также испущена в виде харак- теристического рентгеновского излучения, ХРИ (наиболее вероят- ный процесс при энергии связи электрона более 1 кэВ). Кинетическая энергия оже-электрона не зависит от энергии воз- буждающего излучения, а определяется структурой энергетических уровней атома. Спектр оже-электронов дискретен, а энергия элек- трона равна разности энергии возбуждения и энергии связи. Типич- ные кинетические энергии оже-электронов для разных атомов и пе-

		реходов составляют от десятков электронвольт до нескольких кило- электронвольт.
		После вылета оже-электрона на его месте остается вакансия, ко-
		торая заполняется электроном с более высокой оболочки, а энергия
		уносится испусканием ХРИ или нового оже-электрона. Это проис-
		ходит до тех пор, пока вакансии не перемещаются на самую верх-
		нюю оболочку (в свободном атоме) либо не заполняются электро-
		нами из валентной зоны (когда атом находится в веществе). Эффект
		напоминает образование электронов внутренней конверсии вслед-
		ствие ядерных переходов и передачи их энергии атомному электро-
		ну. Эффект Оже используется в оже-спектроскопии
Определение	Determination	Фундаментальное ограничение при получении несмещенных
площади	of single peak	оценок площадей пиков связано с наличием фона от других источ-
одиночного	area	ников излучений, регистрируемых детектором. В эксперименталь-
пика		ном спектре выделяют три области, представляющие интерес
		(regions of interest, ROI): область пика (ОП) и две области фона
		(ОФ) слева и справа от ОП. Например, 99,96 % площади «одиноч-
		ного гауссиана», которым аппроксимируется пик полного поглоще-
		ния (ППП) гамма-излучения, лежит внутри области с центром, со-
		ответствующим энергии гамма-излучения и шириной, равной утро-
		енной величине FWHM. Ширина ОФ слева и справа от ОП как пра-
		вило выбирается равной 0,5-1 <i>FWHM</i> . Площадь ППП определяется
		при вычитании из суммарного количества зарегистрированных со-

		бытий в области пика суммарного количества фоновых отсчетов в этой же области. Фон под пиком можно аппроксимировать линей- ной функцией (в этом случае суммарный фон равен площади трапе- ции с основанием, равным ОП и боковыми сторонами, равным зна- чениям ОФ). Неопределенность значения площади ППП складыва- ется из суммы неопределенностей количества импульсов в ОП и ОФ.
		В действительности, в силу ряда процессов детектирования из- лучений фон под пиком не всегда является прямой линией. В таком случае вклад фона может быть описан функцией сглаженной сту- пеньки: если C_i – отсчет в <i>i</i> -м канале, а индексы <i>L</i> и <i>U</i> относятся к
		левому и правому краям ОП соответственно, то величина B_n (фон в
		<i>n</i> канале) определяется по эмпирической формуле
		$B_n = C_L - (C_L - C_U) \frac{\sum_{L=1}^n (C_i - C_U)}{\sum_{L=1}^U (C_i - C_U)}.$
		Более точно фон можно определить расчетом с использованием
		методов моделирования взаимодействия гамма-излучения с веще-
		ством. См. также Площадь пика
Органический сцинтиллятор	Organic scintillator	Двух- или трехкомпонентные смеси органических веществ. Пер- вичные центры флуоресценции возбуждаются за счет потери энер-

		гии заряженными частицами, а при снятии возбужденных состоя- ний излучается квант света в УФ диапазоне. Длина поглощения ультрафиолета мала: центры флуоресценции непрозрачны для их собственного излученного света. Вывод света осуществляется до- бавлением к сцинтиллятору второго компонента-сместителя спек- тра, поглощающего первично излученный свет и переизлучающего его изотропно с большими длинами волн (меньшей энергией). Два активных компонента в органическом сцинтилляторе (ОС) или растворяются в органической жидкости, или смешиваются с органическим материалом так, чтобы образовать полимерную структуру. По такой технологии можно производить жидкий или пластический сцинтиллятор любой геометрической формы. ОС имеют гораздо меньшие времена высвечивания (порядка единиц – десятков наносекунд) по сравнению с неорганическими, но мень- ший световыход
Относительная полуширина	Scintillation detector resolution	Отношение полной ширины пика на половине его высоты к энергии пика, выраженное в процентах. Обычно используется при сравнении характеристик сцинтилляционных спектрометров. Для сравнения гамма-спектрометров используют образцовый источник ¹³⁷ Cs (энергия 661,6 кэВ)
Относительная эффективность	Relative efficiency	Используется в гамма-спектрометрии для характеристики детек- торов, которые сравниваются с «классическим» сцинтилляционным детектором. Количество событий, зарегистрированных в ППП ли-

		нии 1332 кэВ ⁶⁰ Со с известной активностью и расположенного на расстоянии 25 см от торцевой поверхности детектора, делится на количество событий, регистрируемых стандартным цилиндрическим детектором NaI(Tl) 3"×3" при том же расстоянии источникдетектор и за то же время. (Скорость регистрации событий в пике полного поглощения $1,2 \times 10^{-3}$ с ⁻¹ на Бк.)
Отношение пик-комптон	Peak-to- Compton ratio, <i>PCR</i>	Величина, позволяющая оценить возможности определения низ- коэнергетических пиков на комптоновском фоне, возникающем вследствие рассеяния гамма-квантов бо́льших энергий. <i>PCR</i> опре- деляется с использованием образцового источника ⁶⁰ Со как отно- шение количества отсчетов в максимуме пика полного поглощения линии 1322 кэВ к среднему количеству отсчетов в его комптонов- ском распределении в области от 1040 до 1096 кэВ. <i>PCR</i> указывает- ся для коаксиальных детекторов, и для современных HPGe- детекторов оно составляет 40–70. Величина <i>PCR</i> возрастает с улуч- шением энергетического разрешения и ростом эффективности де- тектора
Отношение сигнал-шум	<i>SNR</i> , S/N ratio, signal to noise ratio	Безразмерная величина, равная отношению мощности полезно- го сигнала к мощности шума: $SNR = \frac{P_S}{P_N} = \frac{A_S^2}{A_N^2}$, где <i>P</i> и <i>A</i> – средняя мощность и среднеквадратическая амплитуда соответственно, <i>S</i> –

		индекс, относящийся к сигналу, $N - \kappa$ шуму. SNR часто выражают в децибелах: $SNR(dB) = 10Lg\left(\frac{P_S}{P_N}\right) = 20Lg\left(\frac{A_S}{A_N}\right).$
		Наибольшая величина <i>SNR</i> наблюдается, если форма выходного импульса усилителя напоминает острие (<i>cusp</i>) и описывается выражением $U(t) = U_0 \exp(-k t-\tau)$, где U_0 и k – постоянные. Приняв
		для такого сигнала значение относительного шума (ОШ) за единицу, можно вычислить ОШ для импульсов других форм. Получить сигнал в форме острия методами аналоговой электроники с использованием пассивных элементов практически невозможно, к тому же он неудобен для амплитудного анализа. Используя комбинацию одной дифференцирующей и нескольких интегрирующих цепочек, можно сформировать полугауссиан, приближающийся по форме и ОШ к гауссиану, удобный для обработки аналогово-цифровым преобразователем. Условие, при котором <i>SNR</i> наибольшее, состоит в равенстве постоянных времени интегрирующей и дифференцирующей цепочек: $\tau_I = \tau_D = \tau_0$
Отработавшее ядерное топливо	Spent fuel	Ядерное топливо, извлеченное из реактора после облучения и не подлежащее дальнейшему использованию в этом реакторе. После выгрузки из реактора ОЯТ временно размещается в бассейне вы-

(TRO)		держки для отвода тепла, затем поступает на хранение и переработ- ку (извлечение компонентов ОЯТ для их дальнейшего использова- ния)
Очень большой детектор	Very large detector	Гипотетический детектор, в котором все вторичные частицы и кванты, образовавшиеся при взаимодействии исследуемого гамма- излучения с веществом, не выходят за пределы чувствительной об- ласти детектора. Вследствие этого любые события взаимодействия вносят вклад в формирование пика полного поглощения, площадь которого пропорциональна поглощенной энергии гамма-квантов
Память много- канального анализатора	MCA memory	Электронная схема, предназначенная для запоминания дискрет- ного спектра. Разрядность ячейки памяти, выделенной под канал, определяет максимально возможный отсчет в канале. Для многих задач с небольшой скоростью счета подходит 10 ⁶ отсчетов. Для из- мерения интенсивных пиков необходимы более емкие ячейки. Большинство автономных МКА имеют встроенные функции для проведения анализа (определение положения пиков, их ширины, проведение энергетической градуировки, определение полного чис- ла импульсов в выбранном диапазоне, площадей пиков и др.)
Параллельный АЦП	Parallel ADC, flash ADC	Устройство для оцифровки аналогового сигнала с предусилите- ля. Основой параллельного АЦП являются аналоговые компарато- ры, одновременно сравнивающие напряжение входного сигнала с набором опорных значений, формируемых с помощью делителя. Если напряжение на входе компаратора превышает напряжение на

		его инвертирующем входе, то на выходе компаратора формируется напряжение логической единицы. Код, получаемый на выходе линейки компараторов, состоит из нулей и единиц, но не является при этом двоичным. Для его приведения к двоичному виду используется специальная цифровая схема – преобразователь кодов (шифратор). <i>N</i> -разрядный параллельный АЦП состоит из 2^N резисторов и $2^N - 1$ компараторов. В настоящее время в составе цифровых блоков для обработки спектрометрической информации используются 15-разрядные АЦП со временем преобразования 20–100 нс
Парный спектрометр	Pair spectrometer	Принцип действия парного спектрометра (ПС) основан на регистрации событий, порожденных эффектом образования электроннопозитронных пар, т.е. ПС предназначен для измерений энергии квантов более 1,022 МэВ. Коллимированный пучок первичного гамма-излучения попадает на кристалл-анализатор, и два аннигиляционных кванта, образующиеся при взаимодействии гаммаизлучения с детектором, с большой долей вероятности его покидают, но впоследствии могут быть зарегистрированы двумя управляющими кристаллами. Амплитудный анализ сигналов от кристалланализатора проводится только при наличии тройных совпадений. Каждой гамма-линии с энергией E_{γ} в приборном спектре соответствует пик с энергией $E_{\gamma} - 2m_ec^2$ (пик двойной утечки). Размеры чувствительной области кристалла-анализатора (центрального детектора) выбираются достаточными для обеспечения требуемой

		эффективности регистрации. Как правило, этот детектор имеет ци- линдрическую форму, и направление потока квантов совпадает с осью цилиндра. Поэтому определяющим размером в данном случае является высота цилиндра, а диаметр цилиндра выбирается таким, чтобы аннигиляционные гамма-кванты легко его покидали. В настоящее время ПС используется в основном в фундаментальных исследованиях
Период полу-	Half-life, $T_{1/2}$	Время, за которое активность радионуклида снижается в два
распада, 1 1/2		проводится исходя из конкретных условий (контекста) по значени-
		ям их периодов полураспада
Пик аннигиля-	Annihilation	Пик, соответствующий энергии 0,511 МэВ, образуется: 1) при
ционного излу- чения	peak	аннигиляции позитронов, образованных в окружающих чувстви-
		Tenbrijte contacts getektopu matephanax (nanprimep, b saighte e cons
		шим Z), и попадании аннигиляционных гамма-квантов в детектор;
		шим Z), и попадании аннигиляционных гамма-квантов в детектор; 2) при измерении β^+ -активных нуклидов, если образовавшиеся
		шим Z), и попадании аннигиляционных гамма-квантов в детектор; 2) при измерении β^+ -активных нуклидов, если образовавшиеся вследствие распада позитроны аннигилируют до попадания в де-
		шим Z), и попадании аннигиляционных гамма-квантов в детектор; 2) при измерении β ⁺ -активных нуклидов, если образовавшиеся вследствие распада позитроны аннигилируют до попадания в де- тектор
Пик Брэгга	Bragg peak	 шим Z), и попадании аннигиляционных гамма-квантов в детектор; 2) при измерении β⁺-активных нуклидов, если образовавшиеся вследствие распада позитроны аннигилируют до попадания в детектор См. Кривая Брэгга
Пик Брэгга Пик двойного	Bragg peak Double escape	 шим Z), и попадании аннигиляционных гамма-квантов в детектор; 2) при измерении β⁺-активных нуклидов, если образовавшиеся вследствие распада позитроны аннигилируют до попадания в детектор См. Кривая Брэгга См. Пик двойной утечки
Пик Брэгга Пик двойного вылета	Bragg peak Double escape peak	 шим Z), и попадании аннигиляционных гамма-квантов в детектор; 2) при измерении β⁺-активных нуклидов, если образовавшиеся вследствие распада позитроны аннигилируют до попадания в детектор См. Кривая Брэгга См. Пик двойной утечки

Пик двойной утечки	Double escape peak	Пик в энергетическом спектре гамма-излучения, положение ко- торого соответствует разности между энергией гамма-кванта (большей 1,022 МэВ) и энергией двух гамма- квантов, возникших при аннигиляции электронно-позитронной пары и покинувших чув- ствительную область детектора гамма-излучений без взаимодей- ствия, равной 1,022 МэВ. Полуширина этого пика больше, чем ши- рина ППП той же энергии, из-за доплеровского уширения анниги- ляционной линии 0,511 МэВ
Пик каскадного суммирования	True coincidence summing (<i>TSC</i>) peak	Ложный пик, возникающий при суммировании двух и более кас- кадных гамма-квантов, образующихся при распаде радионуклида и одновременно попадающих в детектор. В результате такого процес- са интенсивность регистрируемых гамма-линий может как завы- шаться, так и занижаться. Так как вероятность одновременной реги- страции каскадных квантов сильно зависит от квадрата телесного угла с центром в источнике, в пределах которого находится чув- ствительная область детектора, существенно снизить роль КС поз- воляет увеличение расстояния от источника до детектора. Поправки на каскадное суммирование можно также вычислить, используя ме- тоды математического моделирования распространения излучения от источника к детектору
Пик обратного рассеяния	Back scattering peak	При углах рассеяния, близких к л, энергия рассеянного кванта слабо зависит от угла. Регистрируемые гамма-кванты, пройдя чув- ствительную область детектора без взаимодействия, могут испытать

		комптоновское рассеяние в окружающих материалах назад и вер- нуться в детектор. При энергиях падающих квантов более 500 кэВ энергия обратно рассеянных квантов находится в диапазоне 170– 255 кэВ. Соответствующий пик энергетического спектра ассимет- ричен и называется пиком обратного рассеяния
Пик одиночно- го вылета	Single escape peak	См. Пик одиночной утечки
Пик одиночной утечки	Single escape peak	Пик в энергетическом спектре гамма-излучения, положение ко- торого соответствует разности между энергией гамма-кванта (большей, чем 1,022 МэВ) и энергией одного из двух гамма- квантов, равной 0,511 МэВ, возникших при аннигиляции электрон- но-позитронной пары, но покинувшего чувствительную область де- тектора без взаимодействия. Полуширина этого пика больше, чем ширина ППП той же энергии, из-за доплеровского уширения анни- гиляционной линии 0,511 МэВ
Пик полного поглощения	Full energy peak, FEP	1. Пик в спектре, соответствующий энергии гамма-кванта E_{γ} . Пик полного поглощения (ППП) формируется, главным образом, фотоэлектронами, образованными при фотоэффекте (фотоэлектри- ческом поглощении гамма-кванта). Характеристическое рентгенов- ское излучение (ХРИ), сопровождающее фотоэффект, и оже- электроны испускаются практически одновременно с покинувшими

атом фотоэлектронами. ХРИ также вызывает фотоэффект, поэтому электронам передается вся энергия исчезнувшего фотона (если часть ХРИ не покинет чувствительную область), а сигналы от них суммируются и формируют ППП. В ППП также вносят вклад электроны, образованные в результате фотоэлектрического поглощения однократно или многократно рассеянных вследствие эффекта Комптона гамма-квантов (комптоновской перекачки): эти сигналы суммируются с сигналами от рассеянных комптоновских электронов, полностью поглотившихся в чувствительной области детектора.

Вклад в ППП вносит и эффект парообразования, если аннигиляционные гамма-кванты полностью поглощаются за счет фотоэффекта в веществе чувствительной области детектора. Суммарная энергия порожденных при этом фотоэлектронов в совокупности с энергией электрона, образованного в паре с позитроном, равна энергии первоначального кванта. Итак, ППП сформирован сигналами, полученными в результате трех основных механизмов взаимодействия гамма-излучения с веществом, а не только фотоэффекта. Поэтому нельзя отождествлять ППП с фотопиком.

2. Пик в нейтронном спектре, регистрируемый детектором заряженных частиц по суммарной энергии продуктов, выделенной при экзоэнергетической ядерной реакции нейтрона с ядрами вещества детектора (³He, ⁶Li и др). Сигнал детектора соответствует сумме

		энергии нейтрона <i>E_n</i> и энергии реакции <i>Q</i> (например, <i>Q</i> для 3Не равной 0,764 МэВ)
Пик случайного суммирования	Pile-up, random coincidence, random sum- ming peak	Ложный пик, возникающий при случайном суммировании двух и более гамма-квантов, испускаемых источником излучений вслед- ствие независимых физических процессов и возникающих в течение временного интервала меньшего, чем временное разрешение спек- трометра
Пик утечки характеристи- ческого рентге- новского излучения	X-ray escape peak	Если характеристическое рентгеновское излучение (ХРИ) возни- кает в чувствительной области детектора недалеко от ее границы, оно с большой вероятностью может покинуть эту область. В этом случае возникает пик утечки ХРИ, аналогичный пику одиночного вылета, соответствующий энергии $E_{\gamma} - E_K$ (E_K – энергия связи электрона K-оболочки с ядром): germanium escape peak – для герма- ниевых детекторов, <i>iodine escape peak</i> – для детекторов NaI(Tl), где утечка возникает, главным образом, при взаимодействии гамма- квантов с атомами йода. Эти пики наблюдаются при использовании детекторов небольших размеров
Площадь пика	Peak area	Суммарное число импульсов измеренного пика, пропорциональ- ное геометрической площади пика. Для определения чистой площа- ди (<i>net area</i>), пропорциональной количеству частиц определенного энергетического интервала, испущенных исследуемым образцом, из

		общей площади пика (gross area) вычитают фоновые отсчеты (background)
Поверхностно- барьерный ППД	Surface Barrier silicon Detector	Детектор, в котором <i>p-n</i> переход образуется при окислении про- травленной поверхности основного материала кислородом. На об- разованный таким образом поверхностный <i>p</i> -слой напыляют тонкий слой металла, служащий электродом. Как и у всех ППД, ширина чувствительной области (<i>p-n</i> перехода) зависит от напряжения сме- щения. Поверхностно-барьерные детекторы используют при ком- натной температуре и применяются для спектрометрии осколков деления, альфа-частиц и протонов небольших энергий. Из-за малой толщины чувствительной области емкость таких ППД велика, а энергетическое разрешение не слишком высоко
Поглощенная энергия	_	Разность между полной энергией ионизирующего излучения, вошедшего в объем вещества, и полной энергией ионизирующего излучения, вышедшего из этого объема. В среде отсутствуют ис- точники излучений
Подвижность носителей за- рядов	Carrier mobility	Коэффициент пропорциональности между скоростью дрейфа носителей зарядов и приложенным внешним электрическим полем. Определяет способность электронов и дырок в металлах и полупро- водниках реагировать на внешнее воздействие. Размерность по- движности: м ² /(B·c) или см ² /(B·c). Фактически подвижность чис- ленно равна средней скорости носителей заряда при напряженности электрического поля в 1 В/м

Подготовка	Sample prepa-	Для получения высокого энергетического разрешения при изме-
образцов для	ration for	рении альфа-спектров требуется изготовить образец (источник)
измерения аль-	measurement	«хорошего качества»: исследуемые нуклиды должны быть равно-
фа-активных	alpha-active	мерно распределены в его тонком однородном слое с гладкой плос-
нуклидов	nuclides	кой поверхностью. Толщина источника должна быть существенно
		меньше пробега альфа-частиц в типичных конденсированных сре-
		дах ($R \le 100$ мкм), а его диаметр не должен превышать диаметр де-
		тектора. Поэтому поверхностная плотность источника обычно не
		превышает 10 мг/см ² , а диаметр – 25 мм. Предварительная подго-
		товка пробы выполняется с использованием механических и физи-
		ко-химических процедур, включающих отделение аналита (иссле-
		дуемых нуклидов) от компонентов матрицы и любых мешающих
		факторов. Затем готовят тонкие препараты для альфа-спектро-
		метрии. В процессе подготовки пробы сушку, гомогенизацию, про-
		сеивание, деструкцию и предварительное концентрирование анали-
		та выполняют перед химическим выделением анализируемого ве-
		щества. Радиохимическая обработка включает, помимо подготовки
		пробы и предварительного концентрирования нуклидов, химиче-
		ское разделение элементов с использованием различных методов
		(осаждение, соосаждение, дистилляция, ионный обмен, жидкостная
		экстракция, экстракционная хроматография). Для изготовления
		препаратов используют методы вакуумной сублимации (испарение
		в вакууме, минуя жидкую фазу, и последующее осаждение веще-
		ства на подложку), электроосаждения (выделение фазы на поверх-

		ности электрода в результате протекания электрохимического про- цесса), испарение (нанесение раствора на диск с последующим ис- парением жидкой фазы) и др. Тонкие равномерные пленки форми- руют на металлических подложках. Например, для изотопов U ис- пользуют диски из Pt, для Pu – из нержавеющей стали, Pt, Ni
Поиск пика методом производных	Mariscotti's method	См. Метод производных (метод Марискотти)
Поиск пика с помощью регрессионной функции	Peak search using the corre- lation method	Поиск пика проводится при расчете корреляции между экспери- ментальным спектром y_i и регрессионной функцией (search function) g_i , также называемой функцией подобия, поисковым фильтром, фильтром-коррелятором. Если спектр и функция подобны, сумма произведений их значе- ний в точках x_i , равная $\sum_{i=1}^{n} g_i y_i$, будет наибольшей. Корреляция вычисляется при движении регрессионной функции слева направо: ищется функция взаимной корреляции в виде свертки функций y_i и g_i на интервале шириной $2m$ с центром в точке k : $C_k = = \sum_{i=k-m}^{k+m} g_{i-k} y_i$. В области пиков корреляция максимальна. Ре- грессионная функция наиболее часто выбирается в форме распреде- ления Гаусса со стандартным отклонением, соответствующим энер-

		гетическому разрешению спектрометра на исследуемом участке спектра. В качестве регрессионной функции также используют сту- пенчатые, знакопеременные и другие функции
Поиск пика с помощью статистических алгоритмов	Peak searching using statistical algorithmes	Алгоритмы основаны на статистическом анализе отсчетов в каналах анализатора. Анализ позволяет: 1) выявить значимое отличие информативных отсчетов от фоновых; 2) сопоставить отсчеты в соседних каналах, проанализировав рост или снижение их количества в зависимости от того, с какой стороны от моды распределения пика проводится сравнение; 3) определить положение пика по разнице между суммой отсчетов спектра и фона; 4) вычесть из реально измеренного спектра этот же спектр, но предварительно сглаженный, и т.д. В <i>методе максимума</i> сопоставляются отсчеты в выбранном канале и в соседних с ним каналах. Считается, что в области с максимумом в <i>i</i> -м канале имеется пик с амплитудой $N(i)$, если слева и справа на расстоянии <i>p</i> каналов от него значения $N(i \pm p)$ меньше на $k\sqrt{N(i)}$. Параметры <i>k</i> и <i>p</i> подбираются эмпирически. Поиск пика с использованием <i>функции отображения</i> основан на том, что при приближении слева к максимуму пика число отсчетов в следующих друг за другом каналах чаще всего будет удовлетворять условию $N(i) > N(i-1)$. Определив первую и последнюю точки выполнения данного условия, можно найти метотома.

		шины пика. Функция отображения $F = \begin{cases} 1, если N(i) > N(i-1); \\ 0, если N(i) \le N(i-1) \end{cases}$ бу- дет одинаковой для пиков определенной энергии с любой амплиту- дой. В методе <i>плавающего отрезка</i> сравнивается число отсчетов S_1 и S_2 над и под отрезком, соединяющим две точки спектра. Длина от- резка равна основанию одиночного пика со стандартной полушири- ной для энергии, соответствующей этому участку спектра. Считают, что пик имеется, если $S_1 > q\sqrt{s_2}$ при $q = 2$ -4. Существуют и другие статистические методы, среди которых – статистическая подгонка,
Полупровод- никовый	Semiconductor detector	вычитание из измеренного пика его сглаженной формы и др. Детектор, чувствительная область которого представляет собой обедненный слой <i>p-n</i> перехода или обедненная носителями область
детектор (ППД)		собственной проводимости в <i>p-i-n</i> переходе, к которым приложено обратное напряжение смещения
Полуширина (ПШПВ)	Full width at half maximum, <i>FWHM</i>	Полная ширина пика на половине его высоты, выраженная в энергетических (например, в кэВ) или во временных (например, в мкс) единицах. В первом случае является характеристикой энергетического разрешения спектрометра, во втором – временного разрешения
Порог	Crirical level,	См. Критический уровень

распознавания	L_C	
Постоянная времени <i>RC</i> -цепочки	<i>RC</i> time constant	Временная характеристика простых электрических цепей (диф- ференцирующей или интегрирующей), в которых происходит изме- нение заряда конденсатора <i>C</i> при разряде через резистор <i>R</i> . Опреде- ляется из соотношения $\tau = RC$, и имеет размерность времени. См. также <i>Интегрирующая цепочка</i> и <i>Дифференцирующая це- почка</i>
Предел детек- тирования	Detection limit, L_D	Если чистый сигнал (измеренный сигнал за вычетом фона) пре- вышает предел детектирования (ПД), то обнаружение радионуклида можно гарантировать с вероятностью не ниже 0,95. ПД при среднем фоне <i>B</i> обычно определяют по формуле $L_D = 2,71+4,65\sqrt{B}$. Также используется формула $L_D = 3\sqrt{B}$ или иные выражения
Предел количе- ственного определения, нижняя граница определяемых содержаний	Determination limit, limit of quanti- tation, L_Q	Наименьшее количество вещества (активности) в пробе, которое определяется количественно с заданной неопределенностью данным прибором. При измерении сигнала с наперед заданной неопределенностью количество зарегистрированных полезных событий (импульсов) или площадь пика, содержащего L_Q импульсов, определяется из уравнения $L_Q = k_Q(L_Q + \sigma_0^2)$, где k_Q – величина, обратная значению заданной неопределенности (если неопределен-

		ность составляет 10 %, то $k_Q = 1/0, 1 = 10$), а σ_Q – стандартное от- клонение. С вероятностью 0,95 при заданной неопределенности 0,5 и среднем фоне <i>B</i> величина $L_Q = 5,66\sqrt{B}$
Предусилитель	Preamplifier	Электронный блок, предназначенный для интегрирования заряда выходного импульса, образуемого в детекторе при регистрации ча- стицы или кванта, усиления слабого сигнала от детектора и его пе- редачи на вход спектрометрического усилителя. Для минимизации случайных электромагнитных наводок и сохранения отношения сигнал-шум (SNR) предусилитель размещается как можно ближе к детектору, а его вход согласован по импедансу с характеристиками детектора. При условии передачи выходного сигнала предусилителя по <i>длинному кабелю</i> предусилитель должен иметь <i>малое выходное со- противление</i> , т.е. являться генератором напряжения. Существуют предусилители, чувствительные по току, по напряжению и по заря- ду. Наибольшее распространение в спектрометрии <i>зарядочувстви- тельный предусилитель</i>
Приборная форма линии	Instrument line shape	См. Аппаратурная форма линии
Природные радионуклиды	Natural radio- nuclides,	См. Естественные радионуклиды

	NORM (Natu- rally Occurring Radioactive materials	
Пробег	Range of	Пробег заряженных частиц (ПЗЧ) в среде, R – полный путь, пройденный заряженной частицей с начальной энергией E от входа в среду до того, как ее скорость сравняется со скоростью теплового движения частицы.
заряженных	charged	Для конкретной среды величина полных удельных потерь энергии dE/dx частицы с определенным зарядом и массой зависит только от ее кинетической энергии $\frac{dE}{dx} = \varphi(E)$. В приближении непрерывного замедления $R = \int_0^{E_0} \frac{dE}{\varphi(E)}$. ПЗЧ измеряется либо в единицах длины, либо в г/см ² .
частиц	particles	Величина ПЗЧ обратно пропорциональна всем тем параметрам, которым удельные потери энергии прямо пропорциональны. Если пробег выражен в г/см ² , он не зависит от плотности вещества. Зависимость среднего пробега от энергии (величина среднего пробега соответствует толщине вещества, проходя которое число частиц снижается вдвое) не выражается в элементарных функциях. Для

		альфа-частиц в воздухе ($P = 760$ мм. рт. ст., $t = 15$ °C) при $E < 10$ МэВ справедлива формула Гейгера $\overline{R}_{\alpha} = 0,318E\alpha^{3/2}$, где пробег выражен в сантиметрах, а энергия – в мегаэлектронвольтах. Для любого вещества с атомной массой A используют формулу Брэгга $R_{\alpha} = \frac{10^{-4}}{\rho} \cdot \sqrt{AE\alpha^3}$. Здесь пробег выражен в сантиметрах, а плотность среды – в г/см ³
Продлеваю- щееся мертвое время	Expended (paralyzied) dead time	Если после поступления сигнала вход устройства (усилителя) остается открытым, последующий сигнал может поступить с детек- тора до того, как предыдущий будет обработан. В этом случае про- изойдет наложение импульсов, приводящее к продлению мертвого времени (MB). Величина MB будет определяться интенсивностью поступающих сигналов, поэтому MB в данном случае называется продлевающимся, τ_e . Если интенсивность поступающих событий (импульсов) равна N_0 , а зарегистрированных событий – N , то $N =$ $= N_0 e^{-N_0 \tau_e}$. При $N_0 \rightarrow 0$ экспонента может быть аппроксимирова- на суммой $N = \frac{N_0}{e^{N_0 \tau_e}} = \frac{N_0}{1+N_0 \tau_e}$, что совпадает с формулой для не- продлевающегося MB. Для нахождения N_0 уравнение должно быть решено численно

Продукты деления	Fission products	Осколки деления и продукты их ядерных превращений, раство- ренные в теплоносителе или присутствующие в нем в виде дис- персной фазы, а также прошедшие системы очистки и попавшие в воздух производственных и технологических помещений и в сво- бодную атмосферу. К основным продуктам деления (ПД) относятся радиоактивные благородные газы (ксенон, криптон), изотопы йода, цезия, стронция и др. Радионуклидный состав, удельная и объемная активности некоторых ПД контролируются в обязательном порядке для обеспечения ядерной и радиационной безопасности объектов использования атомной энергии
Пропорцио- нальный счетчик на основе ³ Не	³ He-filled proportional counter	Детектор на основе смеси ³ Не и тяжелого газа, работающий в режиме пропорционального усиления. Нежелательное влияние сте- ночного эффекта, упругого рассеяния на ядрах гелия в значитель- ной степени устраняется учетом различий форм импульсов детекто- ра от различных событий. Энергетическое разрешение такого де- тектора сильно уступает разрешению гелиевой ионизационной ка- меры
Пропускная способность спектрометра	Spectrometer throughput	В случае продлевающегося мертвого времени скорость счета N будет наибольшей при входной загрузке детектора $N_0 = \frac{1}{\tau_e}$, при этом часть от N_0 , которая анализируется и запоминается, равна

		$1/e = 0,37$. Максимальная скорость счета определяется пропускной способностью (ПС) спектрометрической системы (<i>throughput</i>), которой часто приходится жертвовать для достижения наилучшего энергетического разрешения. Наоборот, увеличение ПС и минимизация поправки на наложение импульсов достигается за счет потери в разрешении. Из-за того, что зависимость $N(N_0)$ имеет максимум,
		мы не можем сказать, чему равно значение входной интенсивности: величина измеренной интенсивности N_0 соответствует двум раз-
		ным значениям входной интенсивности N
Радиационная длина	Radiation length	При прохождении через вещество (<i>Z</i>) энергия быстрого электро- на снижается в <i>е</i> раз на расстоянии порядка <i>x</i> _{рад} , называемом <i>ради</i> -
		ационной длиной. Ее величина
		$x_{\text{pag}} = \left(4\alpha r_e^2 Z^2 n_0 \ln \frac{1}{\alpha^3 \sqrt{Z}}\right)^{-1},$
		где $\alpha = e^2/\hbar c$ – постоянная тонкой структуры (1/ $\alpha \approx 137$), $r_e =$
		$=e^2/m_ec^2$ – классический радиус электрона, n_0 – плотность ато-
		мов вещества
Радиационная	Radiation	Сохранение паспортных характеристик детектора после его
стойкость	tolerance,	нахождения в поле интенсивного ионизирующего излучения, для
детектора	radiation	измерения которого этот детектор не предназначен. При превыше-

	stability	нии допустимых значений поглощенных доз, определяемых типом, материалом и другими характеристиками, энергетическое разреше- ние спектрометров ухудшается, форма пиков искажается, эффек- тивность регистрации излучений падает
Радиационные потери энергии	Radiative (energy) losses	Заряд, движущийся с изменяющейся скоростью, излучает энер- гию пропорционально квадрату ускорения. Ускорение частицы с зарядом <i>ze</i> и массой <i>m</i> , пролетающей на расстоянии <i>b</i> от ядра с за- рядом <i>Ze</i> , пропорционально произведению зарядов и обратно про- порционально массе частицы. Поэтому самые существенные радиа- ционные потери в виде тормозного излучения наблюдаются при торможении легких частиц (электронов)
Радиационный ресурс	Radiation resource	Максимальная доза излучения, для измерения которого предна- значен детектор. После воздействия дозы на детектор сохраняются его основные характеристики и параметры
Радиационный фон	Background radiation	Излучение, формируемое за счет: 1) радионуклидов, содержа- щихся в природных и техногенных объектах вблизи спектрометра; 2) радиоактивных изотопов, находящихся в материалах детектора излучений; 3) взаимодействия космического излучения с материа- лами детектора и объектами вблизи детектора. Фоновые отсчеты детектора являются случайными величинами, распределенными по закону Пуассона
Радиоактивные	Radioactive	Жидкие, твердые и газообразные радиоактивные продукты, об-

отходы (РАО)	wastes	разующиеся на всех стадиях ядерного топливного цикла и не предназначенные для дальнейшего использования. В зависимости от классов РАО, они подлежат различным способам обработки, хранения или окончательного захоронения
Радиоактивные продукты коррозии	Corrosion products	Металлические частицы, попадающие в теплоноситель с по- верхностей оборудования технологического контура при смыве коррозионного слоя. Продукты коррозии (ПК), проходя зону нейтронного облучения, становятся радиоактивными вследствие ядерных реакций под действием нейтронов: (n, γ) , (n, p) и (n, α) . К основным ПК относятся соединения радионуклидов Fe, Mn, Co, Zn, Cr и др. ПК содержатся в теплоносителе первого контура и в радио- активных аэрозолях, образующихся при работе ядерного реактора
Радионуклид	Radionuclide	Нуклид, ядра которого вследствие нестабильности испытывают радиоактивный распад
Разброс пробегов	Straggling	При экспериментальном определении пробегов моноэнергетиче- ских частиц одного типа по пропусканию через образцы вещества различной толщины наблюдается разброс пробегов (РП) – явление, обусловленное не только статистическими флуктуациями потерь энергии, но и многократным рассеянием заряженных частиц в ве- ществе. Распределение значений пробегов около среднего значения $R_{\rm cp}$ хорошо аппроксимируется распределением Гаусса с парамет-

		рами $R_{\rm cp}, \ \overline{\Delta R^2} = \overline{(R - R_{\rm cp})^2}.$
		Величина относительного РП, равная $(\Delta R^2)^{1/2} / R_{cp}$, называется
		стрэгглингом
Разрешение мультиплетов методом деконволюции	Deconvolution method for peak resolution	Использование термина «обратная свертка» (deconvolution) связано с тем, что функция отклика $K(x, s)$ на участке спектра, содержащем мультиплет, зависит только от разности энергий, и уравнение $R_{cp} \int_{a}^{b} K(x,s)u(s)ds = f(x) + \varepsilon$ превращается в уравнение типа свертки (convolution): $\int_{a}^{b} K(x-s)u(s)ds = f(x) + \varepsilon$, где $u(s)$ – вос-
		станавливаемый спектр; $f(x)$ – измеренный спектр, ε – погрешность измерений. При использовании процедуры деконволюции количе- ство искомых пиков восстанавливаемого спектра является априор- ной информацией и задается пользователем. Каждый пик в составе мультиплета описывается тремя парамет- рами: 1) площадью пика; 2) его положением; 3) формой. Если из- вестны любые два параметра, третий определяется из решения мат- ричных уравнений. В данном случае знание формы тождественно знанию величины <i>FWHM</i> при условии, что пик описывается рас- пределением Гаусса. Положение пика можно определить либо с помощью стандарт-

ных процедур поиска, либо с использованием библиотечных данных нуклидов, в которых содержится информация о возможных пиках, образующих мультиплет в данном энергетическом диапазоне. Так как библиотека нуклидов формируется пользователем, то пик, не включенный в библиотеку, не будет идентифицирован. С другой стороны, небольшие пики, входящие в мультиплеты, или очень близко расположенные пики часто нельзя разделить.

Располагая приемлемыми оценками формы пика и его положения, можно найти количество импульсов в *i*-канале (C_i) участка спектра с мультиплетом в виде $C_i = \sum_j a_j A_J g(i, \vec{s}_j) + B_i + R_i$, где суммирование осуществляется по всем *j*-компонентам мультиплета. В формуле: а_i – подгоночный коэффициент (относительная доля активности *j*-нуклида в мультиплете); A_i – площадь пика *j*-компонента, $g(i, \vec{s}_j)$ – функция, аппроксимирующая *j*-пик, \vec{s}_j – вектор параметров этой функции (в случае, если функция – гауссиан, компонентами вектора служат мода пика и его стандартное отклонение); B_i – фоновый отсчет, R_i – погрешность измерения суммарного количества импульсов в *i*-канале. Как правило, фон под мультиплетом представляется степени полиномом вида

		$B_i = \sum_{l=1}^{L} b_l i^l$. Для решения системы уравнений классическая схема МНК не подходит, так как малейшее отклонение в исходных данных вслед- ствие плохой обусловленности системы ведет к сильному различию в решениях. Существует несколько алгоритмов, реализующих итерационные процессы поиска минимума функционала: метод
		Скоффилда-Голда, алгоритм Ричардсона-Луси; модифицированный метод градиентного спуска и др.
Разрешение мультиплетов методом очистки	Peak stripping	Метод сводится к «очистке» пика от мешающего вклада другого пика. Дуплет, содержащий два пика нуклидов <i>A</i> и <i>B</i> , может быть разрешен следующим образом. Измерению пика радионуклида <i>A</i> мешает пик <i>B</i> 1, принадлежащий нуклиду <i>B</i> . Если у этого нуклида также имеется пик <i>B</i> 2, то, измерив чистый нуклид <i>B</i> в аналогичных условиях, можно определить величину <i>B</i> 1/ <i>B</i> 2. После этого из муль- типлета вычитается доля, внесенная нуклидом <i>B</i> , и определяется площадь пика, соответствующего нуклиду <i>A</i> . При вычитании двух случайных величин (<i>A</i> и <i>B</i> 1) неопределен- ность разности равна сумме неопределенности каждого слагаемого. Если же из триплета вычесть таким образом два пика, точность ре- зультата будет еще ниже
Распределение	Gauss	То же, что и Нормальное распределение

Гаусса	distribution	
Распределение Пуассона	Poisson distribution	Случайная величина X распределена по закону Пуассона, если она принимает целочисленные значения (0, 1, 2,, $m,$) с вероятностями $P_m = \frac{a^m}{m!}e^{-a}$, где a – параметр распределения, $m = 0, 1,$ Математическое ожидание и дисперсия пуассоновского распределения равны a . Распределение описывает число распадов радионуклида за время t , число пар носителей зарядов, образующихся при взаимодействии излучения с веществом, является предельным для биномиального распределения
РЕМИКС- топливо	REMIX-fuel (REgenerated MIXture) of U- Pu-oxides fuel	Ядерное топливо, содержащее смесь обогащенного урана с ураном и плутонием, извлеченным из отработавшего ядерного топлива (ОЯТ). В смесь из ОЯТ добавляют обогащенный U (20–40 %) до смеси следующего состава: примерно 4 % 235 U, 1–2 % Ри и ~ 95 % остальных изотопов U, в основном 238 U. Эта технология подразумевает повторное использование не только Ри, содержащегося в ОЯТ, но и остаточного количества 235 U. В REMIX-топливе энергия выделяется в основном за счет деления ядер U, а его поведение в активной зоне близко к поведению уранового топлива
Рентгеновское излучение	X-rays	Фотонное излучение, диапазон длин волн (частот) которого находится между ультрафиолетовым и гамма-излучением, частично перекрываясь с их диапазонами. Рентгеновское излучение (РИ)

		возникает при торможении электронов на мишени рентгеновской трубки (тормозное излучение с непрерывным спектром), при пере- ходах электронов атомов и молекул с верхних энергетических уровней на вакантные места, образующиеся при освобождении электроном занимаемого нижнего уровня (характеристическое рентгеновское излучение, ХРИ, с линейчатым энергетическим спек- тром). Взаимодействует с веществом главным образом посредством фотоэлектрического поглощения, рэлеевского и комптоновского рассеяния
Световой выход сцинтиллятора	Light yield	Число испущенных сцинтиллятором оптических фотонов при поглощении частицы с энергией 1 МэВ. Световой выход (СВ) свя- зан с числом электрон-дырочных пар, образующихся в кристалле при поглощении ионизирующего излучения, поэтому СВ обратно пропорционален ширине запрещенной зоны материала. Наиболь- шим СВ должны обладать диэлектрики с малой шириной запре- щенной зоны или полупроводники. В настоящее время наибольший СВ наблюдается в кристаллах бромидов и йодидов
Сглаживание эксперимен- тальных данных	Experimental data smoothing	Процедура сглаживания используется при разбросе эксперимен- тальных данных, обусловленном, например, плохой статистикой. Используются различные методы сглаживания. Одним из наиболее эффективных является сглаживание с помощью кубических сплай- нов – кубической функции, состоящей из суммы квадратов откло- нений экспериментальных точек от ее значений и дополнительного
		члена, зависящего от параметра сглаживания. В предельных случаях сглаживающий сплайн совпадает либо с прямой линией, либо с интерполяционным сплайном
---------------------------	-----------------------------	--
Сечение взаимодействия	Cross section	Величина, отражающая вероятность взаимодействия между из- лучением и мишенью (частица, система частиц). Различают <i>микро- скопическое сечение взаимодействия</i> (<i>CB</i>), σ , равное среднему ко- личеству частиц, приходящихся на одну мишень, которые испытали взаимодействие с веществом при его облучении единичным флюен- сом частиц, и <i>макроскопическое CB</i> , Σ , равное вероятности взаимо- действия излучения на единицу длины. Для гамма-излучения мак- роскопическое CB равно линейному коэффициенту ослабления. CB складывается из сечения рассеяния и сечения поглощения
Сместитель спектра	Wave length shifter, WLS	Вещество, добавляемое в жидкосцинтилляционный коктейль для смещения спектра испускания активатора в область, соответствую- щую наибольшей спектральной чувствительности фотоэлектронно- го умножителя (так, для измерения активности органических ве- ществ, растворимых в толуоле, добавляют РОРОР). Острая необхо- димость применения сместителя спектра (СС) отпадает, если в ЖС- спектрометре используются современные ФЭУ с примерно одина- ковой чувствительностью по отношению к фотонам с различными длинами волн. Применение СС полезно при измерении растворов, содержащих высокие концентрации гасителей сцинтилляций, так

		как при этом снижается вероятность повторного поглощения излучения активатором, т.е. возрастает прозрачность ЖС к собственному излучению
Смешанный спектр	Mix spectrum	Суперпозиция линейчатого и непрерывного спектров. Например, энергетическое распределение некоторых бета-излучателей состоит из линейчатого спектра конверсионных электронов, наложенного на непрерывный бета-спектр
Смещение	Bias	См. Напряжение смещения
Собственная эффективность детектора	Intrinsic detector efficiency	См. Внутренняя эффективность детектора
Сопротивление нагрузки	Load resistance	Суммарное электрическое сопротивление всех блоков и устройств, расположенных после детектора излучений
Спектрометр	Spectrometer	Экспериментальная установка для определения энергетических спектров источников ионизирующих излучений, необходимых для идентификации радионуклидов и их активности, основанной на однозначной связи между поглощенной энергией излучения и откликом детектора. Спектрометр состоит из детектора излучений, электронного тракта для усиления и формирования электрических сигналов и блоков классификации, накопления и обработки информации в удобном для дальнейшего использования виде

Спектрометр антисовпадений	Anticoinci- dence spectrometer, Compton suppression spectrometer, anti-Compton spectrometer	Спектрометр гамма-излучения, состоящий из центрального кри- сталла-анализатора небольшого размера и высокоэффективного охранного сцинтиллятора (неорганического, жидкого или пластиче- ского), окружающего кристалл-анализатор. Импульсы, образующи- еся в кристалле-анализаторе при поглощении гамма-квантов, фор- мируют аппаратурный спектр. Из-за небольшого размера этого де- тектора рассеянные вследствие эффекта Комптона гамма-кванты могут выйти из детектора, но с большой вероятностью поглощают- ся охранным сцинтиллятором. Импульсы с обоих детекторов посту- пают на схему антисовпадений: импульсы, пришедшие одновре- менно с двух детекторов, не учитываются. В современных спектро- метрах данного типа (центральный кристалл – ППД) удается сни-
Спектрометр нейтронов на основе иониза- ционной камеры с ³ Не	³ He gridded ionization chamber spectrometer	зить комптоновский фон в 30–60 раз Ионизационная камера (ИК) с сеткой, заполненная ³ Не с добав- лением Ar и CH ₄ (парциальные давления 3,6 и 0,5 атм соответствен- но). При взаимодействии нейтрона энергии E_n с ядрами гелия мак- симальная энергия ядра отдачи составит 0,75 E_n . Энергия теплового пика реакции равна 0,764 кэВ. При регистрации моноэнергетиче- ских нейтронов с $E_n > 1$ МэВ пик в экспериментальном спектре наблюдается правее 0,764 кэВ. Энергия таких нейтронов пропорци- ональна разности между центроидами этого пика и теплового пика реакции. Сложность обработки спектра обусловлена попаданием в измеренный спектр импульсов от сопутствующих событий: стеноч-

		ного эффекта, упругого рассеяния нейтронов на ядрах гелия, прото- нов, пороговых реакций на ядрах гелия. Спектр нейтронов восста- навливают по экспериментальным данным. ИК, заполненные ³ Не, используются для измерений энергий до 10 МэВ. <i>FWHM</i> пика пол- ного поглощения составляет 12–20 кэВ в диапазоне энергий доли электронвольт – 1 МэВ
Спектрометри- ческий усилитель	Linear pulse-shaping amplifier	Электронный блок, к функциям которого относят: 1) усиление сигнала, поступающего с выхода предусилителя; 2) формирование сигнала для его дальнейшей обработки. В обоих случаях должна всегда сохраняться содержательная информация, получаемая от де- тектора, а отношение сигнал-шум (SNR) должно быть максимально возможным. Спектрометрический усилитель должен усиливать входной им- пульс напряжения до уровня 10–12 В по амплитуде, прямо пропор- циональной величине амплитуды входного импульса. Коэффициент усиления, регулируемый в диапазоне от 1 почти до 10 ⁴ , должен быть стабилен во всем <i>динамическом диапазоне</i> . Формирование выходного импульса аналогового усилителя в настоящее время в основном осуществляется двумя методами: с ис- пользованием линии задержки и с помощью <i>CR</i> - и <i>RC</i> -цепочек (дифференцирующих и интегрирующих)
Спектрометрия	Alpha-	См. Альфа-спектрометрия
альфа-	spectroscopy,	

излучения	alpha- spectrometry	
Спектрометрия ионизирующих излучений	Spectrometry of ionizing radiation	Раздел экспериментальной ядерной физики, в котором изучают- ся методы исследования энергетических спектров ядерных излуче- ний. В ядерных технологиях в основном используются методы гам- ма-спектрометрии, альфа-спектрометрии, бета-спектрометрии, спектрометрии нейтронов. Энергия излучений, характерная для изотопных источников бета- и гамма-излучения, находится здесь в пределах от десятков килоэлектронвольт до нескольких мегаэлек- тронвольт (на ускорителях энергии могут достигать существенно больших значений); 4–9 МэВ (для альфа-излучения), доли элек- тронвольт – до 20 МэВ (для нейтронов), поэтому используемые в ядерных технологиях методы СИИ должны быть эффективны в ука- занных энергетических диапазонах
Спектрометрия нейтронов	Neutron spectrometry	Совокупность методов исследования энергетических распреде- лений нейтронов. Знание энергии нейтронов необходимо: 1) при калибровке нейтронных детекторов; 2) для дозиметрического кон- троля на рабочих местах, где существуют нейтронные поля; 3) вблизи активной зоны реакторов для контроля целостности обо- лочек; 4) на термоядерных установках (диагностика плазмы, бри- динг нейтронов в бланкете). Так как нейтроны не имеют заряда, их регистрация основана на косвенных методах и возможна, если при взаимодействии с чувствительной областью детектора или радиато-

ра нейтроны инициируют образование одной или нескольких заря- женных частиц. Электрические сигналы, вызываемые <i>заряженными</i> <i>частицами</i> , обрабатываются детектирующей системой.
К механизмам, имеющим непосредственное отношение к спек- трометрии нейтронов (СН), относятся: 1) рассеяние нейтрона на яд- ре (методы СН, основанные на рассеянии, эффективны при рассея- нии нейтронов на легких ядрах: водорода гелия и др.); 2) ядерные реакции, продукты которых (протоны, альфа-частицы, гамма- кванты, осколки деления) могут быть зарегистрированы каким-либо детектором. Используемые в СН методы подразделяются на:
1. Методы, в которых измеряют энергию ядра отдачи, получен-
ную им при рассеянии нейтрона;
2. Методы, основанные на измерениях энергии заряженных ча-
стиц, высвобождаемых в ядерных реакциях с участием нейтрона;
3. Методы, в которых измеряется скорость нейтрона;
4. Пороговые методы, в которых индикатором события выступа-
ет факт появления продуктов пороговых ядерных реакций;
5. Методы, в которых энергетическое распределение определя-
ется по показаниям нескольких детекторов с различными функция-
ми отклика;
6. Методы, основанные на дифракции нейтронов;
7. Методы, основанные на измерении замедления быстрых
нейтронов в среде

Спектрометрия	Spectrometry	Измерение энергии Е _А ядер отдачи (ЯО), рассеянных при взаи-
нейтронов методами ядер	of recoil nuclei	модействии с нейтронами, возможно любым методом, используе- мым при спектрометрии заряженных частиц. Энергия нейтронов
		(E_n) определяется из уравнения $E_A = \frac{4A}{(A+1)^2} E_n \cos^2 \theta$, где A –
		масса ядра отдачи, θ – угол разлета нейтрона и ядра. Энергия ЯО максимальна при $A = 1$ (ЯО – ядра водорода). Выполняют измерение энергий либо всех ЯО, либо ЯО, регистрируемых под опреде-
		ленным углом, предпочтительней $\theta = 0$ (так называемый телескоп).
		В первом случае функция отклика спектрометра непрерывна в ши-
		роком энергетическом диапазоне, а в случае использования теле-
		скопа имеет более узкую форму.
		Водородом можно заполнять ионизационные камеры, пропорци-
		ональные счетчики. Для регистрации нейтронов используют также
		водородсодержащие сложные вещества: полиэтилен, органические
		сцинтилляторы. При регистрации ЯО в заданном направлении их
		образование возможно не в детекторе, а в водородсодержащем ра-
		диаторе.
		Метод ЯО характеризуется высоким энергетическим разрешени-
		ем, позволяет измерять область энергетического спектра нейтронов (от 50 каВ до 20 МаВ), которые формируют знашительную насть
		(от 50 ков до 20 мов), которые формируют значительную часть
		дозы. при восстановлении неитронных спектров по измеренным
		энергиям ло часто неооходимо объединять данные, полученные с

		помощью нескольких детекторов
Спектрометрия	Methods of	Экзоэнергетические реакции типа $A(n, b)B$ с образованием заря-
нейтронов	spectrometry	женных частиц можно использовать для определения энергии
с использова-	using nuclear	нейтронов по энергии вторичных частиц. Если реакция происходит
нием ядерных	reaction	под действием медленного нейтрона, кинетической энергией кото-
реакций	products	рого можно пренебречь, то суммарная энергия продуктов реакции
		примерно равна энергии реакции Q. В этом случае амплитуда реги-
		стрируемого сигнала пропорциональна Q. Если же реакция проис-
		ходит под действием быстрого нейтрона с энергией Е, то его энер-
		гия добавляется к энергии Q, и амплитуда сигнала пропорциональна
		Q + E. Разность амплитуд сигналов от реакций, вызванных медлен-
		ными и быстрыми нейтронами, пропорциональна энергии послед-
		них. Рабочее вещество для детектора выбирают из следующих
		условий:
		1) на ядре вещества должна идти только одна экзоэнергетиче-
		ская реакция; 2) сечение реакции должно быть достаточно большим
		в широком диапазоне энергий нейтронов (до нескольких мегаэлек-
		тронвольт), и его зависимость от энергии должна быть как можно
		проще. Лучше всего это условие выполняется в области легких
		ядер; 3) для получения более высокого энергетического разрешения
		энергия реакции не должна быть слишком большой (отношение ам-
		плитуд сигналов от нейтронов с энергиями Е1 и Е2 равно
		$(Q + E1)/(Q + E2)$, поэтому при $Q \rightarrow \infty$ оно стремится к единице).

		При очень малых <i>Q</i> небольшие сигналы от нейтронов низких энер- гий трудно регистрировать; 4) рабочее вещество вводится в газ ИК либо в состав сцинтиллятора.
		Всем указанным требованиям удовлетворяет ограниченное число изотопов, среди которых – ³ He, ⁶ Li, ¹⁰ B. Используются реакции ³ He(<i>n</i> , <i>p</i>) <i>T</i> (<i>Q</i> = 764 кэB), ⁶ Li(<i>n</i> , <i>α</i>) <i>T</i> (<i>Q</i> = 4,78 МэB), ¹⁰ B(<i>n</i> , <i>α</i>) ⁷ Li (<i>Q</i> = 2,79 МэВ)
Среднее значе- ние случайной величины <i>х</i>	Mean, average, expectation, M(x)	Числовая характеристика распределения $p(x)$ дискретной или непрерывной случайной величины x, равная $M(x) = \sum xp(x)$ или $\int_{-\infty}^{\infty} xp(x)dx$ соответственно. Называется также математическим ожиданием случайной величины. Среднее значение равно началь- ному моменту распределения первого порядка
Средняя длина свободного пробега фотона	Mean free path of photon	В отличие от альфа- и бета-частиц фотоны не имеют определен- ного пробега или тормозного пути в веществе. Величина, обратная линейному коэффициенту ослабления (1/µ), имеет размерность длины и называется <i>средней длиной свободного пробега</i> , равной среднему расстоянию, которое проходит фотон (гамма-квант) меж- ду взаимодействиями. Гамма-квант с ненулевой вероятностью мо- жет пройти любой слой вещества без взаимодействия
Средняя энер-	Average energy	Величина ε, определяющая среднее число носителей зарядов n,

гия образова- ния носителей зарядов	needed to cre- ate electron-ion or electron-hole pair	образующихся при поглощении в чувствительной области детектора частиц и фотонов с энергией $E: n = E/\varepsilon$. Наименьшими величинами ε обладают полупроводниковые материалы (3–5 эВ), у газов, используемых в ионизационных камерах значения ε на порядок больше (20–30 эВ). Аналогом величины ε в сцинтилляторах является удельный световыход
Стабилизатор спектра	Spectrum stabilizer	Стабилизатор спектра (СС) фиксирует положение пика при настройке усиления или уровня постоянного тока. Спектрометриче- ские СС, используемые вместе с Ge и Si детекторами – это цифро- вые схемы, соединенные с АЦП. СС рассматривает адрес каждого события, генерируемого АЦП и сохраняет число отсчетов в двух узких окнах на каждой стороне пика. При отклонении от среднего числа отсчетов корректируется коэффициент усиления АЦП и ну- левой уровень – регулировка фиксирует позицию выбранного ста- билизационного пика. При стабилизации часто используют два не- зависимых пика в начале и конце шкалы, соответствующих низким и высоким энергиям. СС сцинтилляционных спектрометров подоб- ны цифровым стабилизаторам, работающим с ППД, но связаны не с АЦП, а со спектрометрическим усилителем
Стандарт КАМАК	<i>CAMAC</i> (Computer Automated Measurement	Стандартизованная модульная аппаратура и система цифрового интерфейса. Стандарт КАМАК разработан позже, чем НИМ, и от- личается от последнего характеристиками линейных и логических импульсов, передающихся от модуля к модулю, и габаритными

	and Control)	размерами
Стандарт НИМ	<i>NIM</i> (Nuclear Instrumentation Modules)	Система стандартизованной модульной аппаратуры. Модули размещены в каркасе <i>bin</i> (<i>NIM-bin</i>). Питающий модуль, также уста- новленный в каркасе, снабжает остальные блоки необходимым напряжением постоянного тока. Стандарт <i>NIM</i> принят в 1964 г. Другие источники напряжения смещения совместимы с каркасами <i>NIM</i> , но получают энергию от обычного источника переменного тока. Источники напряжения смещения с высокими значениями то- ка, используемые для питания цепей ФЭУ, часто устанавливают в стандартных каркасах высотой 44,45 см (8,75") и минимальной ши- риной 3,43 см (1,35") или кратных значениям ширины (x2, x3). В стандартный каркас <i>NIM</i> можно разместить до 12 модулей мини- мальной ширины. Для генерации требуемого напряжения в <i>NIM</i> -источниках напряжения смещения часто используют электронный ключевой преобразователь, создающий высокочастотную помеху, нарушаю- шую работу предусилителя и ухудшающую качество спектра
Стрэгглинг	Straggling	См. Разброс пробегов
Сферы Боннера	Bonner sphere system (BSS)	Прототип мультисферной системы для нейтронной спектромет- рии (Bonner, 1960) состоял из пяти полиэтиленовых сфер с диамет- рами от 2 до 12 дюймов, в центре которых размещены небольшие детекторы тепловых нейтронов (цилиндрический сцинтиллятор)

		⁶ LiI(Eu) 4×4 мм. Функции отклика каждой сферы различны, и про- цедура восстановления спектра сводится к решению системы инте- гральных уравнений Фредгольма. С помощью <i>BSS</i> можно опреде- лять спектры нейтронов в широком энергетическом диапазоне, но с невысоким энергетическим разрешением. <i>BSS</i> широко используют- ся в методах радиационной безопасности. Эволюция <i>BSS</i> привела к использованию единственного блока замедлителя, содержащего либо несколько протяженных позиционно-чувствительных, либо несколько небольших детекторов тепловых нейтронов, размещен- ных в разных частях замедлителя. Все измерения производятся од- новременно, без перерыва на изменение геометрии. Метод <i>BSS</i> ха- рактеризуется простой, но длительной процедурой измерения, от- сутствием зависимости функции отклика детекторов от угла приле- та нейтронов и возможностью отсечки мешающих излучений
Схема антисов- падений	Anticoinci- dence circuit	Электронная схема с двумя входами и одним выходом. Выходной сигнал блокируется, если на оба входа в течение заданного временного интервала поступают сигналы
Схема полюс-нуль	Pole zero cancellation	Электронная схема, содержащая переменный резистор, устраняющая отрицательный выброс напряжения, который образуется при прохождении сигнала с длинным экспоненциальным «хвостом» от предусилителя через <i>CR</i> -цепочку. При средних и высоких загрузках детекторов заметная часть импульсов без использования схемы полюс-нуль (СПН) накладывается на «хвосты» предшествующих им-

		пульсов, что вызывает случайное уменьшение их амплитуды и, со- ответственно, ухудшение энергетического разрешения. Название обусловлено использованием преобразования Лапласа для расчета СПН, которое указывает, что для ликвидации отрицательного вы- броса необходимо посредством подбора переменного сопротивле- ния сократить числитель и знаменатель передаточной функции, со- держащие ее нуль и полюс. СПН предложена в 1967 г.
Схема совпадений	Coincidence circuit	Электронная схема с двумя входами и одним выходом. Выход- ной сигнал появляется лишь в случае, когда на оба входа в течение заданного временного интервала поступают сигналы
Сцинтиллятор	Scintillator	Вещество, испускающее под действием заряженных частиц фо- тоны в видимой или ультрафиолетовой частях спектра. Взаимодей- ствие гамма-излучения с веществом сцинтиллятора приводит к по- явлению электронов отдачи в чувствительной области детектора, которые инициируют свечение сцинтиллятора. В результате взаи- модействия нейтронов с веществом сцинтиллятора образуются ядра отдачи (например, протоны) или продукты ядерной реакции (альфа- частицы, протоны, тритоны и др.), передающие электронам свою энергию при ионизационном торможении. Корпускулярное излуче- ние (α- и β-частицы) при торможении в среде также передает энер- гию электронам. По агрегатному состоянию сцинтилляторы под- разделяются на газовые, жидкие и твердые, по химическому соста- ву – на органические и неорганические

Сцинтилляторы для гамма- спектрометрии	Scintillators used in gamma- spectrometry	Для использования в гамма-спектрометрах сцинтиллятор должен эффективно поглощать гамма-излучение, т.е. иметь большие плот- ность и эффективный атомный номер для максимального вклада фотоэффекта в суммарное взаимодействие фотона с веществом. По- этому широко используются неорганические кристаллы, среди ко- торых наиболее известным сцинтиллятором является NaI(Tl). К не- органическим сцинтилляторам для гамма-излучения относятся так- же BGO, LaBr3(Ce), LYSO, YAP и др.
Сцинтилляторы для регистра- ции нейтронов	Scintillators for neutron spectrometry	Сцинтилляторы, содержащие ядра, взаимодействие нейтронов с которыми позволяет найти энергетический спектр нейтронов. Одни представляют собой органические вещества, содержащие водород (антрацен, стильбен, паратерфинил, нафталин), в том числе жидкие сцинтилляторы (NE213, BC-521, EJ-335). Другие – это неорганические вещества, содержащие химические элементы, используемые для идентификации нейтронов по продуктам ядерных реакций (LiI, активированный различными добавками). К последним, в частности, относятся литиевые стекла NE902,905,908,912. В качестве газовых сцинтилляторов используют ³ Не с добавками, увеличивающими световыход
Сцинтилляторы неорганические для альфа- спектрометрии	Inorganic scintillators for alpha- spectrometry	Наиболее известный неорганический сцинтиллятор, используе- мый для α-спектрометрии – ZnS (Ag), у которого световой выход больше, чем у NaI(Tl) в три раза, низкий уровень фона (0,3 имп/ч) и возможность измерений в присутствии фона гамма-излучения. К

		его недостаткам относятся невозможность выращивать кристаллы больших размеров (ZnS применяют в виде мелкодисперсного порошка, наносимого на стеклянную подложку) и частичное поглощение светового потока сцинтилляции по пути к фотокатоду ФЭУ, вследствие чего энергетическое разрешение хуже, чем у NaI(Tl). Для альфа- спектрометрии также положительно зарекомендовал себя неорганический сцинтиллятор GPS (Gd ₂ Si ₂ O ₇)
Сцинтилляци- онный детектор	Scintillation detector	Детектор, состоящий из сцинтиллятора, сопряженного с фото- электронным умножителем. Используется для регистрации всех ви- дов излучений, характерных для ядерных технологий. При взаимо- действии излучения с веществом сцинтиллятора образуются носи- тели зарядов обоих знаков, количество которых однозначно связано с энергией поглощенного излучения. Быстродействие детектора определяется временем высвечивания сцинтиллятора после взаимо- действия заряженной частицы со сцинтилляционным кристаллом (неорганический сцинтиллятор) или с молекулой органического сцинтиллятора. Упрощенная схема появления отклика сцинтилляционного де- тектора при регистрации излучения выглядит следующим образом: 1. Энергия излучения вследствие взаимодействия с веществом сцинтиллятора передается первичным электронам; 2. Поглощение энергии электрона или ее части ведет к возбуж- дению центров свечения, снимаемому испусканием фотонов види-

		мого или ультрафиолетового энергетических диапазонов, обычно 300–700 нм;
		 3. Фотоны, испущенные сцинтиллятором, достигают фотокато- да ФЭУ; 4. На фотокатоде энергия фотона конвертируется в электроны, покидающие фотокатод; 5. Умножение количества фотоэлектронов осуществляется при
		последовательном прохождении динодов ФЭУ;
		6. На аноде ФЭУ формируется импульс тока. В спектрометрическом сцинтицияторе возникают фотоны, нисло
		которых лолжно быть велико и олнозначно связано с величиной
		поглощенной энергии излучения. Кроме того, сцинтиллятор дол-
		жен:
		быть прозрачным для испускаемых фотонов;
		иметь небольшое время высвечивания для обеспечения высокой
		скорости счета;
		иметь показатель преломления близким к показателю преломле-
		ния используемого в фотоэлектронном умножителе (ФЭУ) стекла
		(примерно 1,5) для исключения потерь в местах соединения сцин- тиллятора с входным окном ФЭУ
Сэндвич-	Sandwich	Детектирующая система, состоящая из двух детекторов (обыч-
спектрометр	neutron	но – полупроводниковых) и материала между ними, содержащего

Темновой ток	Dark current, leakage current, background current	Электрический ток, протекающий через детектор под действием приложенного напряжения в отсутствие поглощенного излучения. В ППД причиной темнового тока (ТТ) является попадание носителей заряда в зону проводимости вследствие тепловых флуктуаций. При снижении температуры ТТ детекторов излучений снижается. В ФЭУ источниками ТТ являются термоэмиссия электронов из фото- катода, утечка тока между динодами, а также случайные излучения
Ток утечки	Dark current, leakage current, background current	См. Темновой ток
Тормозная способность линейная	Linear stopping power	См. Линейная тормозная способность
Тормозная способность массовая	Mass stopping power	См. Массовая тормозная способность
Тормозное излучение	Bremsstraglung	Излучение, возникающее при торможении заряженных частиц в электромагнитном поле ядер и атомов среды. Энергия, излучаемая движущейся частицей, пропорциональна квадрату ее заряда и уско- рения. Так как ускорение частицы обратно пропорционально ее

		массе, наиболее интенсивное тормозное излучение (ТИ) возникает при торможении быстрых электронов. Энергетический спектр ТИ непрерывный, с верхней границей, равной начальной энергии элек- трона. При кинетических энергиях электрона много больше их энергии покоя ($E >> m_e c^2$) ТИ электронов направлено в сторону их движения и концентрируется в пределах конуса с угловым раство- ром θ (радиан) = $m_e c^2/E$. На этом явлении основано получение ин- тенсивных пучков высокоэнергичных (до сотен мегаэлектронвольт) у-квантов на электронных ускорителях
Трапециевид- ная фильтрация импульса	Trapezoidal filter output	Алгоритм оцифровки импульса с предусилителя, в результате применения которого формируется импульс (зависимость напряжения от времени) в форме трапеции с характерными временами: Δt_L – время достижения амплитуды импульса (<i>peaking time</i>); Δt_G – плоская вершина (<i>flat top</i>); Δt_L – время спада импульса (<i>fall time</i>). Ширина импульса равна $2\Delta t_L + \Delta t_G$. Изменяющиеся параметры Δt_L и Δt_G используются для управления формой импульса подобно тому, как постоянная времени используется для формирования аналогового импульса (полугауссиана). В современных цифровых спектрометрических системах цифровой процессор оптимизирует энергетическое разрешение и пропускную способность с помощью изменения размеров трапеции, а также при помощи восстановителей базового уровня, компенсации

		полюса нулем, корректировки баллистической ошибки и режектора наложений
Тушение сцинтилляций	Quenching	См. Гашение сцинтилляций
Удельная иони- зация	Specific ionization	Число пар носителей зарядов (ионов, электронно-дырочных пар), образующихся как при взаимодействии заряженной частицы с атомами среды (первичная удельная ионизация, УИ), так и с учетом вторичной ионизации дельта-электронами (полная УИ) на единице длины ее пути. При первичной ионизации число пар носителей опи- сывается распределением Пуассона. Полная УИ пропорциональна ионизационным потерям энергии частицы
Усилитель	Amplifier	Устройство (электронная схема) для усиления электрических сигналов (в том числе импульсных). См. Спектрометрический усилитель
Фактор Фано	Fano factor	Отношение дисперсии случайного процесса к математическому ожиданию на заданном временном интервале W : $F = \frac{\sigma_W^2}{\mu_W}$. Для пуассоновского случайного процесса $F = 1$, так как у него математическое ожидание совпадает с дисперсией. При анализе процессов в детекторах ионизирующих излучений предполагается, что число носителей зарядов распределено по закону Пуассона. Тем не менее,

		полуширина энергетического пика, измеренного полупроводнико- выми детекторами (ППД), меньше, чем ее оцененное значение на основе распределения Пуассона. Это означает, что события энерге- тических потерь излучения в ППД не являются независимыми. Причина такого расхождения состоит в том, что часть энергии, поглощенная полупроводником, идет на возбуждение фононов, ко- торое трансформируется в тепловую энергию. С учетом фактора Фано полуширину определяют по формуле $FWHM(keV) \approx \approx 0.128\sqrt{FE(keV)}$. Величина F для Ag равна примерно 0,2, для по- лупроводниковых материалов – от 0,08 до 0,13. Для сцинтилляторов F = 1
Флэш-АЦП	Parallel <i>ADC</i> , flash <i>ADC</i>	См. Параллельный АЦП
Форма пика альфа- излучения	Alpha-peak shape	Функция отклика «идеального» полупроводникового, ионизаци- онного или сцинтилляционного детектора альфа-излучений (в слу- чае, если энергия частиц не теряется в самом источнике, по пути от источника к детектору и в мертвом слое детектора) представляет собой распределение Гаусса. Перечисленные факторы, снижающие «идеальность» пика, приводят к искажению его формы: возникно- вению асимметрии, уширению (увеличению <i>FWHM</i>), появлению «хвостов» с низкоэнергетической стороны. Энергетические спек- тры, измеренные детекторами различных типов, отличаются по

		форме. Альфа-спектры описывают с помощью суперпозиции не- скольких функций: как правило, это распределение Гаусса и экспо- ненциальные функции. Аппроксимирующая энергетический пик функция зависит от параметров, определяющих ее форму, положе- ние и площадь пика
Фотопик	Photopeak	Фотопик формируется фотоэлектронами, образованными при фотоэлектрическом поглощении рентгеновского или гамма-кванта. Сопутствующие фотоэффекту характеристическое рентгеновское излучение (ХРИ) и оже-электроны испускаются практически одно- временно, в течение примерно 10^{-15} с, с покинувшими атом фото- электронами. ХРИ также вызывает фотоэффект, поэтому электро- нам передается вся энергия исчезнувшего кванта. Суммарный сиг- нал формирует фотопик
Фотоэлектрон- ный умножи- тель (ФЭУ)	<i>PMT</i> , photomultiplier tube	Электровакуумный прибор, состоящий из светочувствительного слоя (фотокатода), электронно-оптической системы ввода (модуля- тор, фокусирующий электрод), динодной системы умножения элек- тронов и собирающего электроны анода. Все компоненты помеще- ны в стеклянную колбу, из которой откачан воздух. Фотоны опти- ческого и ультрафиолетового диапазонов, попадая на фотокатод ФЭУ, находящийся под большим отрицательным потенциалом, вы- бивают из него электроны в результате фотоэффекта. Распределе- ние потенциалов на электродах ФЭУ создается делителем напряже- ния, подключенным к источнику высокого напряжения (0,8–3 кВ).

		За счет электрического поля, создаваемого разностью потенциалов, электроны проходят фокусирующую их систему электродов и попа- дают на первый динод ФЭУ, где происходит вторичная (ударная) электронная эмиссия. Поверхность динодов покрыта слоем веще- ства, у которого коэффициент вторичной эмиссии электронов больше 1 (от 3 до 12). В процессе умножения электроны последова- тельно проходят несколько динодов (6–14, в зависимости от типа ФЭУ), образуя лавину, которая приходит на анод и формирует им- пульс тока на нагрузочном сопротивлении. Общий коэффициент умножения электронов (усиления) может составлять 10^6-10^8
Фотоэффект	Photoelectric absorption, Photoelectric effect	Передача энергии фотона сильно связанному с ядром атомному электрону, в результате чего фотон исчезает, а электрон приобрета- ет кинетическую энергию, равную энергии фотона (гамма-кванта, рентгеновского кванта) за минусом энергии связи электрона (энер- гии ионизации атома) $E_K, E_L, E_M,,$ находящегося, соответствен- но, на <i>K-, L-, М</i> -оболочке атома. Предполагается, что энергия отда- чи ядра пренебрежимо мала. При фотоэффекте (ФЭ) в энергетиче- ском спектре формируется фотопик, составляющий основную часть событий, попадающих в пик полного поглощения. Сечение ФЭ па- дает с ростом энергии гамма-кванта, растет с увеличением атомного номера среды <i>Z</i> пропорционально Z^5 . Если значение энергии фотона находится вблизи энергии ионизации, сечение ФЭ отличается слева и справа от соответствующей энергии скачкообразно. На свободном

		электроне ФЭ невозможен, так как в противном случае были бы нарушены законы сохранения энергии и импульса
Фронт импульса	Rise time	Временной интервал при росте измеряемого сигнала (напряжение, ток) от 0,1 до 0,9 его амплитуды
Функция от- клика детектора	Detector response function	Плотность вероятности появления выходного сигнала <i>x</i> , если со- ответствующая энергия регистрируемой частицы или кванта равна <i>E</i> :
		$N(x) = \int_{E_{\min}}^{E_{\max}} G(x, E) \Phi(E) dE,$
		где $N(x)$ – измеренный спектр, $\Phi(E)$ – искомое энергетическое
		распределение, $G(x, E) - функция отклика в энергетическом диапа-$
		зоне (E_{\min}, E_{\max}) . Под выходным сигналом понимается измеряемая
		величина, зависящая от энергии: угол отклонения в магнитном по- ле, плотность почернения, длина трека, амплитуда электрического или светового сигнала и др.
Центроида (центроид)	Centroid	См. Медиана распределения
Цепь восста- новления базо- вого уровня	Baseline restoration, <i>BLR</i>	Электронная схема на выходе усилителя для поддержания базо- вого уровня напряжения (нулевого потенциала) при значительных загрузках усилителя, который в силу конечной длительности сигна- ла не успевает «подготовиться» к приему следующего сигнала. Ве-

		личина отклонения от нулевого потенциала (смещение базового уровня) зависит от частоты следования импульсов и от их ампли-
		тудного распределения. Вследствие случайного появления сигналов
		бильное смещение базового уровня, в результате чего энергетиче-
		ское разрешение спектрометра ухудшается. Работа цепи восстанов-
		ления базового уровня основана на замыкании ключа в промежут-
		ках между импульсами для возможности использования оифферен-
		цирующей ценочка, возвращающей емещенную обзовую линно к нулевому уровню
Цепь режекции	Pile-up	Электронная схема, снижающая долю регистрируемых импуль-
наложений	rejection	сов, образующихся при наложении импульсов, следующих один за
		другим, и амплитуды суммарных импульсов не соответствуют энер-
		гиям регистрируемых квантов. При высоких скоростях счета цепь
		режекции наложений улучшает энергетическое разрешение детек-
		тора и снижает фон, но не приводит с существенному снижению
		жении пиков полного поглощения
Цифровой	Digital pulse	Электронные блоки для цифровой обработки сигналов с детек-
спектрометри-	processing	торов излучений. АЦП размещается сразу после предусилителя, и
ческий тракт	system	аналоговый сигнал оцифровывается еще до усиления и формирова-
		ния. Оцифрованный сигнал содержит необходимую информацию о
		регистрируемом излучении. Дальнеишие деиствия с сигналом для

		извлечения этой информации представляют собой операции с циф- ровыми последовательностями, однозначно определяющими исход- ные аналоговые импульсы. Ключевым элементом цифрового тракта является программируемое устройство (цифровой процессор). Сиг- нал с предусилителя оцифровывается с помощью быстрого парал- лельного АЦП (<i>flash-ADC</i>). Следующая стадия обработки сигнала, теперь представляющего собой дискретную последовательность определенного размера из значений напряжений $V_{IN}[1]$, $V_{IN}[2],, V_{IN}[i],,$ состоит в его фильтрации – процедуре, анало- гичной формированию аналогового сигнала. Использование оциф- ровки сигналов повышает пропускную способность спектрометра при измерении интенсивных потоков излучений, так как снижается вероятность наложений, и обеспечивается разрешающая способ- ность, как в лучших аналоговых спектрометрических трактах
Черенковское излучение	Cherenkov radiation	Излучение, возникающее при прохождении заряженных частиц через среду, если скорость частиц больше скорости света в среде. Распространяется в пределах конуса, угол которого однозначно свя- зан со скоростью частицы и показателем преломления среды. Наблюдается при работающем реакторе (голубое свечение из ак- тивной зоны) вследствие движения высокоэнергетических электро- нов в воде. Черенковские счетчики, в которых регистрация излуче- ния осуществляется ФЭУ, в основном используются в эксперимен- тальной физике высоких энергий и астрофизике

Чувствительная область детектора	Active region, sensitive volume (of detector)	Область детектора, в которой поглощение излучения приводит к появлению сигналов (электрических, оптических) на сигнальных выводах детектора. В ППД такой областью является <i>p-n</i> переход, к которому приложено <i>напряжение смещения</i>
Ширина пика на 1/10 высоты	Full width at tenth maxi- mum, <i>FWTM</i> , <i>FW0,1M</i>	Характеристика качества спектрометра, критерием которого является близость отношения измеренной ширины энергетического пика на 1/10 его высоты к полуширине пика (<i>FWHM</i>) к соответствующему значению для распределения Гаусса (<i>FWTM</i> / <i>FWHM</i> = 1,82). Приемлемым считается значение отношения < 1,9
Ширина пика на 1/50 высоты	Full width at fiftieth maxi- mum, FWFM, FW0,02M	Характеристика качества спектрометра, критерием которого является близость отношения измеренной ширины энергетического пика на 1/50 его высоты к полуширине пика (<i>FWHM</i>) к соответствующему значению для распределения Гаусса (<i>FWFM</i> / <i>FWHM</i> = 2,28). Приемлемым считается значение отношения < 2,5
Шкала элек- тромагнитных излучений	Electromag- netic spectrum	Диапазон электромагнитных излучений от радиоволн до гамма- излучения. Диапазон длин волн охватывает 20 порядков величины – от 10 ⁸ до 10 ⁻¹² м. В зависимости от задач представим в виде частот- ного или энергетического диапазона
Шумы усили- тельного тракта	Noise of amplifier	Шумы возникают за счет хаотического теплового движения но- сителей зарядов внутри проводника (тепловой шум) и за счет флук- туации числа носителей заряда, проходящих через сечение провод- ника в единицу времени (дробовой шум). Если тепловой и дробовой

шумы появляются вследствие физических явлений, не зависящих от используемых технологий, то шум вследствие так называемых «мерцательных» изменений параметров электронных компонентов (фликкер-шум) зависит именно от технологических параметров (материал резистора, тип соединений и т.п.) и, скорее всего, возникает при частотах f менее 1 кГц с интенсивностью, примерно пропорциональной 1/f. Тепловой шум описывается формулой Найквиста, дробовой – формулой Шоттки. Природа фликкер-шума описана рядом моделей.

Электронные шумы ухудшают энергетическое разрешение спектрометра W_T , определяемое по формуле $W_T = (W_D^2 + W_X^2 + W_E^2)^{1/2}$, где W_D – вклад статистических флуктуаций числа носителей заряда; W_X – вклад эффективности сбора носителей заряда, а вклад электроники $W_E = 2,355q_{\rm III}\omega/e$ ($q_{\rm III} = C_{\rm H}U_{\rm III}$ – среднеквадратичный (эквивалентный) шумовой заряд; $U_{\rm III}$ – среднеквадратичное шумовое напряжение; ω – энергия, затрачиваемая на образование пары носителей заряда; e – элементарный заряд; $C_{\rm H}$ – емкость нагрузки.

Для того чтобы снизить шумы различной природы, принимают взаимоисключающие меры. Например, шум, обусловленный током утечки детектора и тепловой шум в резисторе обратной связи (последовательный шум), можно уменьшить, снижая общий ток детектора, охлаждая резистор, увеличивая его номинал и снижая посто-

		янную времени усилителя. Шум, обусловленный емкостью на входе предусилителя и полевым транзистором (параллельный шум) уменьшают, снижая емкость, охлаждая полевой транзистор и увеличивая постоянную времени усилителя. Шумовая составляющая <i>FWHM</i> типичного зарядо-чувствительного предусилителя при росте емкости нагрузки от 1 до 1000 пФ возрастает более чем в 10 раз
Эквивалентная	Detector	Ток детектора, возникающий при регистрации частицы или
схема	equivalent	кванта, через ключ, замыкаемый на время длительности импульса
детектора	circuit	тока t_i , поступает во внешнюю цепь нагрузки детектора, состоя-
		щую из сопротивления нагрузки ($R_{\rm H}$) и подключенной параллельно
		ему емкости нагрузки (C _н). Емкость нагрузки складывается из ем-
		кости самого детектора $C_{\text{дет}}$, емкости входного устройства, под-
		ключенного к детектору $C_{\rm BX}$, и емкости монтажа $C_{\rm K}$. Последняя
		величина включает в себя емкость соединительных проводов или
		кабеля между детектором и электронным устройством: $C_{\rm H} = C_{\rm det} +$
		$+C_{\rm BX} + C_{\rm K}$
Экстраполиро-	Extrapolated	Пробег вдоль направления распространения частицы, равный
ванный пробег	range	толщине поглотителя, при которой экстраполяция линейной зави-
		симости интенсивности пучка частиц пересекает уровень нулевой
		интенсивности. Экстраполированный пробег (ЭП) меньше полного

		пробега ($R_{3KC} < R$), так как велика вероятность рассеяния легких частиц (электронов) на большие углы. Понятие ЭП используется, в частности, для электронов. В справочных таблицах приводят значения как среднего пробега, так и ЭП
Электронный захват, <i>е</i> -захват	Electronic capture (<i>EC</i>)	Один из видов бета-распада атомных ядер. При электронном за- хвате (ЭЗ) один из протонов ядра захватывает орбитальный элек- трон и превращается в нейтрон, испуская электронное нейтрино. Заряд ядра при этом уменьшается на единицу. Массовое число ядра, как и во всех других видах бета-распада, не изменяется. Процесс ЭЗ характерен для ядер с избытком протонов. Количество протонов в ядре (т.е. заряд ядра) при ЭЗ уменьшается, поэтому этот процесс превращает ядро одного химического элемента в ядро другого эле- мента, расположенного ближе к началу периодической таблицы. Электрон захватывается ядром с ближайших к нему электронных оболочек (в порядке $K, L, M, N,$). Электронный захват более веро- ятен для тяжелых ядер. В случае захвата электрона с K -оболочки процесс называется K -захватом, с L -оболочки – L -захватом и т.д. Атом при электронном захвате переходит в возбужденное состоя- ние с внутренней оболочкой без электрона, а снятие возбуждения происходит путем перехода на нижний уровень электрона с одной из верхних оболочек, причем образовавшуюся на более высокой оболочке вакансию может заполнить электрон с еще более высокой оболочки и т.д. Энергия, выделяющаяся при этом, уносится одним

		или несколькими фотонами характеристического рентгеновского излучения и/или одним или несколькими оже-электронами
Электронный эквивалент мегаэлектрон- вольта	<i>MeVee</i> (MeV electron equivalent)	Из-за того, что световой выход органических сцинтилляторов зависит от типа частиц, для описания абсолютного светового выхо- да иногда используют специальные обозначения. Термин <i>MeVee</i> означает следующее. Энергия частиц, необходимая для генерации 1 <i>MeVee</i> света, равна 1 МэВ для быстрых электронов, но для тяже- лых заряженных частиц эта энергия составляет несколько мегаэлек- тронвольт, так как световой выход, создаваемый ими, меньше в пе- ресчете на единицу энергии. Зависимость светового выхода сцинтиллятора от типа регистри- руемых частиц (α или β) характеризует также α/β-отношение – от- ношение световых выходов при прохождении α-частиц и электро- нов. Эта величина не такая универсальная, как <i>MeVee</i> , но смысл α/β-отношения тот же. Для всех видов органических сцинтилляторов независимо от их природы α/β-отношение примерно одинаково и составляет 0,1. Это позволяет разделять сигналы от альфа- и бета-частиц
Электроны внутренней конверсии	Internal conversion electrons	Электроны, испускаемые атомом вследствие явления внутрен- ней конверсии, состоящего в <i>переходе атомного ядра, находящего-</i> <i>ся в возбужденном состоянии, в состояние с меньшей энергией</i> и передаче избытка энергии одному из электронов атомной оболочки. Энергия электрона внутренней конверсии равна разности энергий

		состояний ядра и энергии связи электрона в <i>K</i> -, <i>L</i> -, <i>M</i> -оболочках. В процессе внутренней конверсии участвует виртуальный фотон. Конкуренция между γ-излучением и внутренней конверсией характеризуется полным коэффициентом внутренней конверсии, равным отношению вероятностей испускания электрона к вероятности испускания γ-кванта. Его величина сильно возрастает с увеличением мультипольности перехода и уменьшением его энергии и растет с увеличением заряда ядра
Энергетиче- ский спектр	Energy spectrum	Функция $\Phi(E)$, описывающая распределение частиц или фотонов по энергиям: $\Phi(E)dE$ – число частиц с энергией E , попадающих в энергетический интервал ($E, E + dE$)
Энергетическое разрешение спектрометра	Energy resolution of spectrometer	Абсолютным энергетическим разрешением (ЭР) спектрометра (ΔE) называется минимальный интервал между энергетическими линиями E_1 и E_2 , при котором эти линии наблюдаются раздельно. Выражается в энергетических единицах (эВ, кэВ) и численно равно <i>FWHM</i> . Относительное ЭР спектрометра при данной энергии (<i>E</i>) равно отношению абсолютного ЭР к значению энергии: $W = \frac{\Delta E}{E} = \frac{FWHM}{E}$. Значение относительного ЭР чаще указывают для сцинтилляционного спектрометра, а абсолютного – для полупроводникового. Часто относительное ЭР выражают не в долях, а в процентах. К основным факторам, влияющим на энергетическое разрешение, относятся: 1) флуктуация числа пар носителей заряда,

		образованных при взаимодействии частицы с чувствительной обла- стью детектора; 2) флуктуация числа собранных пар носителей; 3) электронный шум разного происхождения
Энергия излучения	Radiation energy	Кинетическая энергия частиц (нейтронов, альфа- и бета-частиц), энергия высокочастотного фотонного излучения (рентгеновское излучение, гамма-излучение). Энергия излучения определяется схе- мой распада нуклида, зависит от характера взаимодействия ионизи- рующего излучения с электронными оболочками и ядрами атомов среды
Энергия комп- тоновского электрона	Energy of elec- tron, scattered due to Compton effect	Энергия (E_e) , зависящая от угла комптоновского рассеяния кванта (θ) с энергией E_{γ} и определяемая по формуле $E_e = \frac{E_{\gamma}^2(1-\cos\theta)}{m_ec^2 + E_{\gamma}(1-\cos\theta)}$. Очевидно, энергия комптоновского электрона максимальна при угле рассеяния, равном π , и при этом значении энергии в аппаратурном гамма-спектре наблюдается ассиметрич- ный пик
Энергия покоя частицы	Rest energy of particle	Энергия, определенная по формуле Эйнштейна, связывающей массу и энергию: $E = mc^2$, где m – масса покоя (rest mass) частицы; c – скорость света (3×10 ⁸ м/с). Масса покоя электрона равна 9,11×10 ⁻³¹ кг, что эквивалентно его

		энергии покоя примерно 0,511 МэВ. Энергия покоя протона при- мерно равна 938,26 МэВ, а нейтрона – 939,55 МэВ
Энергия связи электрона с ядром	Binding energy	Разность между энергией состояния, когда электрон и ядро (компоненты системы) удалены друг от друга и находятся в состоянии покоя, и полной энергией связанного состояния системы. Для электронов внешних электронных оболочек нейтральных атомов в основном состоянии энергия связи совпадает с энергией ионизации. Наиболее связаны с ядром электроны на <i>K</i> -оболочках (энергия связи равна от 10 до 140 кэВ для разных химических элементов)
Эффект Комптона	Compton effect	См. Комптоновское рассеяние
Ядерный реактор	Nuclear reactor	Физическая установка для создания управляемой самоподдер- живающийся цепной реакции деления ядерного топлива под дей- ствием тепловых или быстрых нейтронов. Ядерный реактор (ЯР) является мощным источником нейтронов и других ионизирующих излучений. В энергетических ЯР высвобождаемая при делении ядер энергия в конечном итоге преобразуется в электрическую. Про- мышленные ЯР предназначены для получения радиоактивных изо- топов, необходимых для различных задач, а на исследовательских ЯР изучают структуру, состав и свойства материалов и изделий и выполняют иные работы с использованием интенсивных нейтрон- ных потоков тепловых или быстрых нейтронов

Ядерный	Nuclear fuel	Ядерный топливный цикл (ЯТЦ) включает все операции, связан-
топливный	cycle	ные с использованием делящихся и сырьевых материалов, необхо-
цикл		димых для производства электроэнергии, и обращением с радиоак-
		тивными продуктами, образующимися в ходе этих операций. ЯТЦ
		подразделяется на начальную и замыкающую части. Границей,
		«разделяющей» эти части, является атомная станция, которая рабо-
		тает в цикле с предприятиями по добыче и переработке (включая
		транспортировку) ядерного топлива и является одним из звеньев
		предприятий и производств ЯТЦ. Начальная часть ЯТЦ включает
		разведку, добычу и переработку руды, изотопное разделение и изго-
		товление тепловыделяющих сборок. Замыкающая часть ЯТЦ вклю-
		чает переработку облученного топлива, обработку и удаление ра-
		диоактивных отходов. На каждом этапе ЯТЦ методы спектрометрии
		применяют для контроля технологических процессов, при дозимет-
		рическом контроле, в радиоэкологии, для обеспечения ядерной и
		радиационной безопасности
<i>RC</i> -цепочки	RC-circuits	См. Дифференцирующая цепочка, Интегрирующая цепочка
Si-ФЭУ	Silicon photo-	См. Кремниевый фотоэлектронный умножитель
	multiplier,	
	SiPM	
TOF-	TOF, time-of-	См. Времяпролетный спектрометр нейтронов
спектрометр	flight spec-	
	trometer	

Список основной литературы

- 1. Кутьков В.А., Ризин А.И., Фертман Д.Е., Шумов С.А. Терминология ядерного приборостроения. Справочное пособие в 2-х томах / Под ред. С.Б. Чебышова. Т.1. Ядерное приборостроение. Физические явления и основные понятия. М.: ИД Технологии, 2006.
- 2. Ризин А.И., Фертман Д.Е. Терминология ядерного приборостроения. Справочное пособие в 2-х томах. Т. 2. Ядерное приборостроение. Измерение ионизирующих излучений. М.: ООО Группа ИДТ, 2008.
- 3. Термины атомной энергетики. Концерн Росэнергоатом. 2010. https://rus-atom-energy.slovaronline.com/
- 4. Крамер-Агеев Е.А., Лавренчик В.Н., Самосадный В.Т., Протасов В.П. Экспериментальные методы нейтронных исследований. М.: Энергоатомиздат, 1990.
- 5. Абрамов А.И., Казанский Ю.А., Матусевич Е.С. Основы экспериментальных методов ядерной физики. М.: Энергоатомиздат, 1985.
- 6. Волков Н.Г., Христофоров В.А., Ушакова Н.П. Методы ядерной спектрометрии. М.: Энергоатомиздат, 1990.
- 7. Райлли Д. (ред). Пассивный неразрушающий контроль ядерных материалов / Пер. с англ. ВНИИА. Ч. 1 (гл. 1–14). М.: ВНИИА, 2000.
- 8. Gilmore G.R. Practical Gamma-ray Spectrometry. Second Edition. Wiley, 2008.
- 9. Leo W.R. Techniques for nuclear and particle physics experiments. A How-to Approach. 2-th Revised Edition. Springer-Verlag, 1994.
- 10. L'Annunziata M.F. Handbook of radioactivity analysis. Third edition. Elsevier, 2012.
- 11. Knoll G.F. Radiation detection and measurements. 4-th edition. Wiley, 2010.
- 12. Будыка А.К. Спектрометрия ионизирующих излучений. Гамма-спектрометрия. М.: НИЯУ МИФИ, 2021.