Г.Д. Смит. Атомная энергия для военных целей

Глава IX, ОБЩЕЕ РАССМОТРЕНИЕ ВОПРОСА О РАЗДЕЛЕНИИ ИЗОТОПОВ
(окончание)

в электрическом и магнитном полях. Это     поля, которые являются основой так называемого масс-спектрографического или электромагнитного метода разделения изотопов. Электромагнитный метод является наиболее подходящим для определения относительного содержания (распространенности) изотопов. Он обычно применяется для проверки результатов разделения изотопов урана

методами, описанными выше. Ценность электромагнитного метода заключается в том, что с его помощью легко произвести почти полное разделение изотопов, очень быстро, с малой загрузкой и с коротким пусковым периодом. Чтобы ответить на вопрос, почему же тогда рассматриваются любые другие методы разделения, достаточно напомнить, что обычный масс-спектрограф может разделять лишь ничтожные количества вещества, обычно порядка долей микрограмма в час.

9.29. Чтобы понять причину такой ограниченной производительности, мы опишем в общих чертах принцип действия простого масс-спектрографа, впервые употреблявшегося А.Дж. Демпстером в 1918 г. Прибор изображен схематически на рис. 5. Разделяемое


газообразное соединение вводится в пространство, где часть его молекул ионизуется электрическим разрядом. Некоторые из ионов проходят через щель S1 Между S1 и S2 они ускоряются электрическим полем, которое сообщает им всем практически одинаковую кинетическую энергию, в тысячи раз большую средней тепловой энергии. Так как теперь все ионы обладают практически одинаковыми кинетическими энергиями, то более легкие ионы должны иметь меньшее количество движения, чем более тяжелые. Попадая в магнитное поле через щель S2, все ионы движутся (перпендикулярно магнитному полю) по полуокружностям с радиусами, пропорциональными их количествам движения. Поэтому легкие ионы будут двигаться по меньшей полуокружности, чем тяжелые, и, если поместить коллектор в соответствующее положение, будут собраны только легкие ионы.

9.30. Оставляя в стороне детальное рассмотрение прибора, мы отметим лишь главные причины, лимитирующие количества разделяемого вещества. Эти причины состоят в следующем: во-первых, трудно получить большие количества газообразных ионов; во-вторых, берется очень узкий пучок ионов (как показано на рисунке), так что используется только часть полученных ионов: в-третьих, слишком большие плотности ионов в пучке могут вызвать эффект объемного заряда, который мешает разделению.

Все разработанные до 1941 г. устройства, основанные на электромагнитном методе, имели большие коэффициенты разделения, но низкие производительность и эффективность. Это послужило причиной того, почему летом 1941 г. Комитет по урану отказался от применения электромагнитных методов для выделения U-235 в больших масштабах (см. параграф 4.31). Позднее, однако, было показано, что указанные ограничения не непреодолимы. Действительно, первые образцы чистого U-235 ощутимых размеров были получены посредством электромагнитного разделения, как это описано в следующей главе.

ДРУГИЕ МЕТОДЫ РАЗДЕЛЕНИЯ ИЗОТОПОВ

9.31. В дополнение к методам разделения изотопов, описанным выше, было испытано также несколько других. Метод ионной подвижности, как указывает название, основан на следующем факте.


В растворе электролита два иона, химически тождественные, но с различными массами, движутся через раствор с различными скоростями под действием электрического поля. Однако, различие в подвижности мало и легко затемняется возмущающими явлениями. А.К. Бруэр (Бюро Стандартов) сообщал, что добился разделения изотопов калия этим методом. Бруэр также получил интересные результаты с методом выпаривания. В главе XI описаны два новые электромагнитные метода     изотропный и метод ионного центрифугирования. Изотронный метод дал некоторое количество образцов порядочных размеров частично разделенного урана; на ионной центрифуге также были получены образцы, обнаруживающие разделение урана, но ее работа была неустойчива.

КАСКАДНЫЕ И КОМБИНИРОВАННЫЕ ПРОЦЕССЫ

9.32. Во всех статистических методах разделения изотопов для получения вещества, содержащего 90% или больше U-235 или дейтерия, необходимо много последовательных ступеней разделения. Если поток движется непрерывно от одной ступени к следующей, то ряд таких последовательных ступеней разделения называется каскадом (фракционирующая колонна из отдельных тарелок является примером простого каскада разделительной установки). Теория каскада была разработана Р.П. Фейнменом (Принстон) и другими для определенного типа электромагнитного сепаратора и К. Когеном и И. Капланом (Колумбийский университет), М. Бенедиктом и А.М. Сквайрсом (корпорация Келлекс) и др.     для диффузионных процессов. Здесь мы отметим только два момента, касающиеся многоступенчатых, или "каскадных" установок.

9.33. В каскадных установках должна быть применена рециркуляция. В установке для выделения U-235 вещество, поступающее в любую ступень, кроме первой, уже обогащено U-235. Часть этого вещества может быть еще раз обогащена при прохождении через эту ступень. Остальная чясть вещества будет обеднена, но все же не полностью обесценена. Она должна быть возвращена на рециркуляцию в более низкую ступень. Даже обедненное вещество из первой (наименее обогащенной) ступени нужно направить на рециркуляцию, так как некоторое количество U-235, которое в нем содержится, может быть извлечено (регенерировано).


9.34. Рассматривая установившуюся работу ступени, мы увидим, что полезный поток урана сквозь первую ступень должен быть по крайней мере в 140 раз больше, чем сквозь последнюю ступень. Полезный поток в любой ступени пропорционален относительной концентрации U-238 и таким образом уменьшается с числом пройденных ступеней. Так как любой данный образец вещества подвергается многократной рециркуляции, то количество вещества, прошедшего через любую ступень, значительно больше, чем полезный поток сквозь эту ступень, но пропорционально ему.

9.35. Мы остановились на этих вопросах, чтобы осветить ту сторону проблемы разделения, которая не всегда очевидна, а именно, что процесс разделения, являющийся лучшим для ранних ступеней разделения, не обязательно является лучшим для последующих ступеней. Факторы, которые мы отметили, различны не только для разных ступеней, но и для разных процессов разделения. Например, рециркуляция значительно проще осуществляется на диффузионной установке, чем на электромагнитной. Установка, сочетающая два или более процесса, может оказаться наилучшей для достижения требуемого конечного разделения. На более низкой (следовательно более крупной) ступени размеры потребного оборудования и мощности могут определить выбор процесса. На более высокой (меньшей) ступени эти факторы уступают удобству в эксплоатации и времени установления равновесия, которые могут сделать более выгодным другой метод.

УСТАНОВКИ ДЛЯ ТЯЖЕЛОЙ ВОДЫ
ОПЫТНАЯ УСТАНОВКА ПО МЕТОДУ ЦЕНТРИФУГИРОВАНИЯ

9.36. Следующие две главы посвящены описанию трех методов, применяемых для промышленного разделения изотопов урана. Они имеют наибольшее значение для Проекта в настоящее время. В начале работы представлялось, что центрифугирование может оказаться наилучшим методом разделения изотопов урана. и что в качестве замедлителя потребуется тяжелая вода. Мы кратко опишем опытную установку по методу центрифугирования и завод для производства тяжелой воды.


ЗАВОДЫ ДЛЯ ПРОИЗВОДСТВА ТЯЖЕЛОЙ ВОДЫ

9.37. Для концентрации дейтерия использовались два метода: фракционная перегонка воды и метод изотопного обмена водород-вода.

9.38. В первом из них применяются хорошо разработанные методы фракционной перегонки, но требуемая длительность перегонки очень велика, так как разность точек кипения легкой и тяжелой воды незначительна. По той же причине количество потребного пара очень велико. Метод очень дорог, но заводы смогли быть сооружены при минимуме исследовательских работ. Заводы были начаты стройкой фирмой Дюпон в январе 1943 г. и пущены в ход в январе 1944 г.

9.39. Второй метод производства тяжелой воды основан на каталитическом обмене дейтерием между газообразным водородом и водой. Когда такой обмен при помощи катализаторов устанавливается, концентрация дейтерия в воде, как указывалось, больше, чем в газе, приблизительно в три раза.

9.40. При осуществлении процесса изотопного обмена воду подают в колонну, противотоком к водороду и пару довольно сложным способом. На дне колонны в электролизере вода разлагается на газообразные водород и кислород, и, затем, водород, смешанный с паром, подается обратно в нижнюю часть колонны. Смесь пара и водорода проходит через слой катализатора и барботирует через стекающую вниз воду. Сущность процесса заключается в том, что часть дейтерия, находившегося первоначально в водороде, концентрируется в паре и затем переносится в стекающую вниз воду. Завод состоит из каскада колонн с самой большой колонной на входе и самыми маленькими колоннами на выходе. Построение этого каскада основано на тех же принципах, которые мы рассмотрели выше в общем обзоре методов разделения. Осуществление процесса требует очень активных катализаторов для обменных реакций. Наиболее эффективный катализатор был найден X.С. Тэйлором в Принстонском университете. Одновременно, менее активный катализатор был открыт А. фон Гроссе. Для улучшения этих катализаторов Р.Г. Крист (Колумбийский университет) сделал необходимые определения физических констант, а Г.Р. Арнольд (фирма Дюпон) провел работы по усовершенствованию одного из катализаторов.


9.41. Описанный процесс был экономичен. Ввиду необходимости применения электролитического водорода установка была расположена на территории завода Consolidated Mining and Smelting Co. в Трэйле (Британская Колумбия, Канада). Строительством завода руководил Э.Р. Мерфри и Ф.Т. Бар из фирмы Standard Oil Development Co.

ОПЫТНЫЙ ЗАВОД ПО МЕТОДУ ЦЕНТРИФУГИРОВАНИЯ

9.42. В первые дни существования Проекта наиболее подходящими методами разделения урана долго считали метод газовой диффузии и метод центрифугирования. Реализация обоих методов в широком масштабе представляла значительные трудности. После реорганизации, в декабре 1941 г., исследование и развитие метода центрифугирования продолжалось в Виргинском университете и в лаборатории Standard Oil Development Co. в Бэйуэй. Для достижения высоких скоростей на больших центрифугах серьезная работа была проведена фирмой Westinghouse Electric and Manufacturing Co. в Ист-Питсбурге.

9.43. Вследствие больших технических затруднений, возникших в связи с этим, вместо установки промышленного масштаба, была разрешена и построена опытная установка в Бэйуэй, Она успешно работала, и на ней было достигнуто разделение, приближающееся к предсказанному теорией. Позднее установка была остановлена, и работы по методу центрифугирования прекращены. Поэтому в настоящем отчете метод центрифугирования дальше не рассматривается.

РАЗДЕЛЕНИЕ ИЗОТОПОВ И ПРОИЗВОДСТВО ПЛУТОНИЯ

9.44. Наиболее важные методы разделения изотопов, которые были описаны, в принципе были известны и применялись на практике до того, как задача разделения изотопов урана приобрела первостепенное значение. Эти методы не применялись ни для урана (если не говорить о выделении нескольких микрограммов), ни для других веществ в масштабе, сколько-нибудь сравнимом с потребностями настоящего времени. Основными вопросами были стоимость, выход и время, а не принципы разделения. Другими словами, проблема была в основном техническая, а не научная;


получение плутония достигло большого размаха только после того, как стал работать первый котел, и были получены первые микрограммы плутония. Но даже и после этого многие эксперименты, проведенные по плутонию, представляли существенный интерес с точки зрения применения для военных нужд как U-235, так и плутония, и для будущего развития вопросов атомной энергии. Вследствие этого, вопросы производства плутония продолжали представлять более общий интерес, чем вопросы разделения изотопов. Многие исключительно интересные специальные проблемы возникли при разрешении вопроса разделениями потребовали высококвалифицированных научных сил для их разрешения, но они пока еще должны сохраняться в секрете. По этим причинам настоящий не технический отчет делает основной упор на вопрос о плутонии и уделяет меньше места вопросам разделения. Этим мы не хотим сказать, что проблема разделения легче разрешима или что ее разрешение имеет меньшее значение.

КРАТКОЕ СОДЕРЖАНИЕ ГЛАВЫ

9.45. За исключением электромагнитного метода разделения, разделение изотопов основано на небольших отличиях в среднем поведении молекул. Они используются в шести "статистических" методах разделения: (1) газовая диффузия, (2) перегонка, (3) центрифугирование, (4) термодиффузия, (5) обменные реакции, (6) электролиз. Вероятно только методы (1), (3) и (4) подходят для урана, а (2), (5) и (6) брлее пригодны для выделения дейтерия из водорода. Во всех "статистических" методах коэффициент разделения не велик, так что они требуют многих ступеней, но каждый метод дает возможность переработать большое количество вещества. Все эти методы были успешно опробованы до 1940 г., но ни один из них не применялся в промышленном масштабе, и ни один из них не был использован для урана. Производительность электромагнитного метода еще меньше, но коэффициент разделения больше.

Для промышленного применения электромагнитного метода существовали очевидные ограничения. Благодаря различиям характеристик процесса в различных ступенях разделения, допускалась возможность преимуществ комбинирования двух или более


методов. Проблема развития одного или всех этих методов является не научной, принципиальной, а технической проблемой масштаба и стоимости. Поэтому эти вопросы могут быть освещены более кратко¦ чем вопросы плутония, хотя они имеют не меньшее значение. Была построена и успешно работала опытная центрифуга. Промышленная установка не была построена. Были построены также заводы для производства тяжелой воды по двум различным методам.