

ПРАКТИКУМ ПО КУРСУ ХИМИИ

ФЕДЕРАЛЬНОЕ АГЕНТСТВО ПО ОБРАЗОВАНИЮ

МОСКОВСКИЙ ИНЖЕНЕРНО-ФИЗИЧЕСКИЙ ИНСТИТУТ (ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ)

ПРАКТИКУМ ПО КУРСУ ХИМИИ

УДК 54 (075) ББК 24я7 П 69

783900

Практикум по курсу химии: учебное пособие / Е.А.Ананьева, Н.Ю.Безрукова, М.А.Глаголева, М.Ф.Звончевская, Т.В.Жукова, Ж.С.Кучук, Н.В.Липанова, Е.А. Месяц, Т.Б.Миндлина, В.И.Петров, В.В.Сергиевский, Н.Д.Хмелевская. М.: МИФИ, 2008. — 104 с.

Практикум состоит из 16 тестовых программ, систематизированных по основным темам курса: строение атома, закономерности химических процессов и взаимодействий в химических системах различного типа, свойства элементов и их соединений. Представлены варианты домашних заданий, вопросы к контрольным работам по неорганической химии, электрохимии и химии растворов, а также вопросы к зачету и экзамену.

В приложении приведен большой объем справочновспомогательного материала, используемого при решении задач.

Задания предназначены студентам 1 курса дневного отделения для контроля знаний по теоретическим разделам курса.

Рекомендовано к изданию редсоветом МИФИ в качестве учебного пособия

ISBN 978-5-7262-0893-0

© Московский инженерно-физический институт (государственный университет), 2008

Редактор Шумакова Е.Е.

Подписано в печать 25.01.2008 Формат 60х84 1/16 Печ.л.6,5 Уч.-изд.л. 6,5 Тираж 2000 экз. Изд. № 001-1 Заказ № 20

Московский инженерно-физический институт (государственный университет).
Типография МИФИ.
115409, Москва, Каширское шоссе, 31

Оглавление

	Основные обозначения
Тема 1.	Химические вещества и реакции
Тема 2	Строение атома
Тема 3.	Контрольная работа
Тема 4.	Законы стехиометрии (Г)
Тема 5	Законы стехиометрии (II)
Тема 6.	Химическое равновесие
Тема 7.	Химическая кинетика
Тема 8.	Окислительно-восстановительные реакции (ОВР)
Тема 9.	Коллоидные системы
Тема 10.	Комплексные соединения
Тема 11.	Свойства f-элементов
Тема 12.	Строение вещества. Групповые и индивидуальные
	свойства элементов
Тема 13.	Энергетика химических процессов (варианты домашних
	заданий)
Тема 14.	Зачетное задание I семестра
Тема 15.	Растворы. Электрохимия
Тема 16.	Кислотно-основные системы
Тема 17.	Контрольные вопросы
TOMA IT.	ПРИЛОЖЕНИЕ
1.	Энергия разрыва связей при 0 К двухатомных молекул
2.	Энергия разрыва связей в молекулах и радикалах газооб-
	разных веществ при 298 К
3.	Энергия кристаллической решетки (ΔH_{298} , кДж/моль)
4.	Относительные электроотрицательности атомов (ЭО) в
	молекулах
5.	
-	Стандартные энтропии (S_{298}^0), энтальпии образования
	$(\Delta H^0_{ m oбp,298})$ и энергии Гиббса образования $(\Delta G^0_{ m oбp,298})$
6.	Произведение растворимости (ПР) малорастворимых со-
	единений в воде при 298 К
7.	Константы диссоциации кислот и оснований
8.	Общие константы нестойкости комплексных ионов
9.	Равновесные потенциалы выделения водорода и кислорода
10.	Стандартные электродные потенциалы в водных растворах
10.	при 298 К
11.	
11.	Перенапряжение выделения водорода, кислорода и хлора
12.	на электродах
12.	Приближенные значения коэффициентов активности ионов
12	(y_{\pm}) при различных ионных силах (I) раствора
13.	Схемы окислительно-восстановительных взаимодействий
14.	Растворимость кислот, гидроксидов и солей в воде
	Список литературы

ОСНОВНЫЕ ОБОЗНАЧЕНИЯ

OBP — окислительно-восстановительная реакция;

СО - степень окисления;

ПР – произведение растворимости;ЭДС – электродвижущая сила;

```
A — paбота;
А -- атом неметалла;
A^{z-} — анион с зарядом z-;
C – концентрация, моль/л (молярность);
C_{\rm m} – концентрация, моль/кт растворителя (моляльность);
E – относительный электродный потенциал, В;
    электродвижущая сила (ЭДС) электрохимической цепи, В;
    разность электродных потенциалов электрохимической цепи, В;
     – элементарный заряд, \overline{e} =1.602·10<sup>-19</sup> Кл;
F – число Фарадея, F = 96484,56 Кл/моль;
G — энергия Гиббса, Дж, Дж/моль;
H — энтальпия, Дж, Дж/моль;
K – константа равновесия;
М - молярная масса;
М – атом металла;
M^{z+} – катион с зарядом z+;
m - \text{macca};
N_A – число Авогадро, N_A = 6,02252·10<sup>23</sup> моль<sup>-1</sup>:

 и – число электронов, участвующих в элементарном акте ОВР;

 n – количество вещества, моль;

р – давление, Па, атм;
рН – водородный показатель;
R — универсальная газовая постоянная, R = 8,3143 Дж/моль K;
S — энтропия, Дж/К, Дж/(моль-К)

    Т – температура по шкале Кельвина;

V – объем:
z — зарядовое число иона;
Z – порядковый номер элемента;
\eta – перенапряжение, B;
v – стехиометрический коэффициент;
\rho – плотность, г/см<sup>3</sup>;
\omega – массовая доля, %;
у<sub>+</sub> – среднеионный коэффициент активности;
I — ионная сила раствора.
   Верхний индекс «о» у термодинамических функций означает, что вещества
находятся в стандартном состоянии.
   Знак «А» означает изменение функции (конечное значение минус начальное).
```

Тема 1. ХИМИЧЕСКИЕ ВЕЩЕСТВА И РЕАКЦИИ

Вопрос 1

Определите, к каким классам химических соединений относятся приведенные ниже вещества. Назовите каждое соединение. Отметьте тип соли: кислая, средняя, основная. Для каждого оксида укажите его характер: основной, кислотный, амфотерный, несолеобразующий.

- KOH; HgO; Fe(OH)₃; H₂SO₄; Al(OH)₃; CaO; FeF₃; N₂O₅; Na₂CO₃; NaHCO₃
- 2. SO₂; CoCl₂; K₂O₂; Mg(OH)₂; CuSO₄; HNO₃; NH₄Cl; KMnO₄; Be(OH)₂; (CuOH)₂SO₄
- KHSO₃; BaO; Cr(OH)₃; H₂CO₃; KClO₃; Cd(OH)₂; P₂O₅; Na₂CrO₄; HClO; AlOHSO₄
- 4. NaHCO₃; Ni(OH)₃; CO₂; H₂Cr₂O₇; Na₂O; FeO; PbCl₂; CaHPO₄; Zn(OH)₂; H₂SiO₃
- Na₂SO₄; NH₄HS; NaOH; Sr(OH)₂; Na₂WO₄; SO₃; N₂O; Co₂O₃; H₃PO₄; HBr
- 6. Al(OH)₃; CH₃COONa; V₂O₅; NaClO; Pb(OH)₂; Fe₂O₃; NO; HMnO₄; HI; (ZnOH)₂SO₄
- Cr(OH)₃; SnO₂; Al₂(SO₄)₃; SrCO₃; KHCO₃; HF; AuCl₃; NiO; NaHCO₃; H₃BO₃
- 8. H₄P₂O₇; Cl₂O₇; B₂O₃; H₂CrO₄; FeSO₄; PbO₂; Zn(NO₃)₂; ZnO; KHCO₃; CrCl₃
- NaAlO₂; SO₂; KHS; H₃PO₄; Ca(HCO₃)₂; Mg(OH)₂; AlCl₃; Cd(OH)₂; AgCl; SrO
- 10. Cs₂SO₄; Au(OH)₃; LiF; Ag₃PO₄; Fe(OH)₂; CO₂; H₃VO₄; Zn(OH)₂; Al₂O₃; Li₂SO₄
- 11. AsCl₃; H₃AsO₄; Sn(OH)₄; Na₂SiO₃; Fe(NO₃)₃; NaOCl; CH₃COONH₄; KHCO₃; H₃BO₃; H₂O
- 12. NiCl₂; P₂O₅; KMnO₄; Mn₂O₇; Ba(OH)₂; H₂SO₃; Hg(OH)₂; NaHS; Al₂O₃; HNO₂
- 13. NaAlO₂; B₂O₃; H₃PO₄; AuCl₃; Mg(OH)₂; CaO; Ca(HCO₃)₂; HF; RbOH; AlOHCl₂
- CdCl₂; Sr(OH)₂; HClO₄; (NH₄)₂SO₄; KHCO₃; MgO; H₂SiO₃; H₂O; Na₂WO₄; SO₃

- 15. Mn_2O_7 ; Cl_2O ; NaH_2AsO_4 ; K_2SO_4 ; $Ca(OH)_2$; H_2SiO_3 ; Li_2O ; H_2SO_4 ; CO_2 ; $(ZnOH)_2SO_4$
- 16. K₂CO₃; K₂HPO₄; (CuOH)₂CO₃; SO₂; Al₂O₃; Mg(NO₃)₂; HNO₂; KHS; NH₄Cl; NaHCO₃
- 17. (CH₃COO)₂Ca; Pb(OH)₂; H₂O; HNO₃; H₂CO₃; AlPO₄; NaOH; Cl₂O₇; AlOH(NO₃)₂; KHCO₃
- 18. NH₄HS; SO₃; Sn(OH)₄; Fe₂(SO₄)₃; H₂S; CoO; N₂O₃; KMnO₄; HCl; FeOHSO₄
- 19. CaSO₄; CaF₂; CoCl₂; Sr(OH)₂; HClO₄; NaH₂PO₄; HgO; AgNO₃; N₂O₄; K₂O; H₃PO₄
- 20. CO; NaAlO₂; B₂O₃; HI; BaO; NaHCO₃; K₂MnO₄; CaF₂; HPO₂; Cu(OH)₂

Допишите уравнения реакций, протекающих в водных растворах, расставьте коэффициенты и запишите уравнения в ионномолекулярной форме. Воспользуйтесь таблицей растворимости (приложение, табл. 14).

```
в) хлорид бария + сульфат калия →

2. а) ZnO + HCl → ; б) Li<sub>2</sub>O + H<sub>2</sub>O →

в) гидроксид меди (II) + серная кислота →

3. а) Na<sub>2</sub>O + H<sub>2</sub>O → ; б) SO<sub>3</sub> + NaOH →

в) карбонат кальция + соляная кислота →

4. а) N<sub>2</sub>O<sub>5</sub> + H<sub>2</sub>O → ; б) NaOH + SO<sub>2</sub> →

в) сульфат алюминия + хлорид бария →

5. а) CaO + H<sub>2</sub>O → ; б) Zn(OH)<sub>2</sub> + HBr →

в) гидрокарбонат натрия + гидроксид натрия →
```

1. a) NaHCO₃ + NaOH \rightarrow ; 6) Ca(OH)₂ + CO₂ \rightarrow

в) гидроксид железа (II) + серная кислота \rightarrow 7. а) CuO + H₂SO₄ \rightarrow ; 6) Ba(OH)₂ + HNO₃ \rightarrow в) хлорид кальция + карбонат натрия \rightarrow

8. a) $Ca + H_2O \rightarrow$; 6) $Al(OH)_3 + HCl \rightarrow$

в) нитрат серебра + соляная кислота \rightarrow

6. a) KOH + CuSO₄ \rightarrow

б) $Cs_2O + H_2O →$

```
9. a) P_2O_5 + KOH \rightarrow
                                             6) NaOH + H_2SO_4 \rightarrow
    в) карбонат аммония + серная кислота →
                                             б) CaCl<sub>2</sub> + Na<sub>2</sub>CO<sub>3</sub> →
10. a) K_2O + H_2SO_3 \rightarrow
    в) нитрат бария + сульфат железа (II) →
11. a) SO_3 + H_2O \rightarrow
                                             б) CuSO₄ + NaOH →
    в) хлорид хрома (III) + гидроксид натрия →
12. a) Ca(OH)_2 + SO_2 \rightarrow
                                             6) Na + H<sub>2</sub>O \rightarrow
    в) сульфат железа (III) + гидроксид натрия \rightarrow
13. a) N_2O_5 + H_2O \rightarrow
                                             6) Mg(OH)_2 + HNO_3 \rightarrow
    в) нитрат серебра + хлорид натрия \rightarrow
14. a) RbOH + CO_2 \rightarrow
                                             6) ZnO + HCl →
    в) сульфат железа (III) + ортофосфат натрия →
15. a) Na<sub>2</sub>O + H<sub>2</sub>SO<sub>4</sub> \rightarrow
                                             6) NH<sub>4</sub>Cl + NaOH \rightarrow
    в) гидрокарбонат кальция + азотная кислота →
16. a) Ba(OH)<sub>2</sub> + SO<sub>3</sub> \rightarrow
                                             б) HBr + Mg(OH)<sub>2</sub> →
    в) сульфат калия + хлорид бария \rightarrow
17. a) Cs + H_2O \rightarrow
                                             6) P_2O_5 + KOH \rightarrow
    в) гидроксид хрома (III) + соляная кислота \rightarrow
18. a) Ba(OH)<sub>2</sub> + HNO<sub>3</sub> \rightarrow ;
                                           б) Ca + H<sub>2</sub>O →
    в) гидроксид меди (II) + соляная кислота →
19. a) Cs_2O + H_2O \rightarrow
                                             6) FeSO<sub>4</sub> + NaOH \rightarrow
    в) ортофосфат натрия + нитрат свинца (II) →
20. a) Ba(OH)<sub>2</sub> + HNO<sub>3</sub> \rightarrow ;
                                            б) Ca + H<sub>2</sub>O →
    в) хлорид кальция + сульфат меди →
Вопрос 3
    Методами электронного или электронно-ионного баланса опре-
делите стехиометрические коэффициенты в ОВР. Укажите окисли-
тель и восстановитель. Напишите уравнения в ионно-молекулярной
форме.
    KMnO_4 + KNO_2 + H_2SO_4 \rightarrow MnSO_4 + K_2SO_4 + H_2O + KNO_3
1.
```

2. $FeSO_4 + KClO_3 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + KCl + H_2O$

3. $KI + KMnO_4 + H_2SO_4 \rightarrow I_2 + MnSO_4 + K_2SO_4 + H_2O$

4. $NH_3 + KMnO_4 + KOH \rightarrow KNO_3 + K_2MnO_4 + H_2O$

5. $KNO_2 + KI + H_2SO_4 \rightarrow NO + I_2 + K_2SO_4 + H_2O$

6. $KMnO_4 + HCl \rightarrow MnCl_2 + Cl_2 + KCl + H_2O$

- 7. $Cr_2O_3 + Br_2 + NaOH \rightarrow Na_2CrO_4 + NaBr + H_2O$
- 8. $P + HNO_3 + H_2O \rightarrow H_3PO_4 + NO$
- 9. $H_2S + KMnO_4 + H_2SO_4 \rightarrow S + MnSO_4 + K_2SO_4 + H_2O$
- 10. K1 + KBrO₃ + HCl \rightarrow l₂ + KBr + KCl + H₂O
- 11. $Cu + HNO_3(конц.) \rightarrow Cu(NO_3)_2 + NO_2 + H_2O$
- 12. $Zn + KMnO_4 + H_2SO_4 \rightarrow ZnSO_4 + MnSO_4 + K_2SO_4 + H_2O$
- 13. $MnO_2 + HCl \rightarrow MnCl_2 + Cl_2 + H_2O$
- 14. $SnSO_4 + KMnO_4 + H_2SO_4 \rightarrow Sn(SO_4)_2 + MnSO_4 + K_2SO_4 + H_2O_4$
- 15. $KMnO_4 + Na_2SO_3 + KOH \rightarrow K_2MnO_4 + Na_2SO_4 + H_2O$
- 16. $PbO_2 + HCl \rightarrow PbCl_2 + Cl_2 + H_2O$
- 17. Ag + HNO₃(pa₃6.) \rightarrow AgNO₃ + NO + H₂O
- 18. $KIO_3 + H_2SO_3 \rightarrow I_2 + K_2SO_4 + H_2O + H_2SO_4$
- 19. $K_2SO_3 + KMnO_4 + H_2O \rightarrow K_2SO_4 + MnO_2 + KOH$
- 20. $H_2SO_3 + Br_2 + H_2O \rightarrow H_2SO_4 + HBr$

Тема 2. СТРОЕНИЕ АТОМА

Изучите следующие понятия, определения и сведения: атом, химический элемент, атомная орбиталь, тип элемента, электронная формула (полная, сокращенная и в виде энергетических ячеек), закономерности формирования энергетических уровней и подуровней, принцип минимума энергии, принцип Паули, правила Хунда, Клечковского, квантовые числа, формы атомных орбиталей, электронные аналоги, валентность, «орбитальный» атомный радиус, энергия ионизации и сродства к электрону, электроотрицательность, степень окисления, номенклатура химических соединений, структурная формула вещества, ионно-молекулярные уравнения реакций.

Вопрос 1

Для элемента с порядковым номером Z:

а) составьте полную и сокращенную электронную формулу и электронную формулу в виде энергетических ячеек, б) укажите тип элемента (s, p, d, f), назовите его электронные аналоги; в) укажите максимальную валентность; г) приведите значения квантовых чисел для валентных электронов, соответствующих максимальной валентности.

№	Z	No	Z	No	Z	No	Z
п/п		п/п		п/п		п/п	
1	16	6	26	11	34	16	28
2	24	7	7	12	22	17	33
3	17	8	21	13	35	18	29
4	25	9	8	14	27	19	4
5	14	10	23	15	15	20	47

Составьте молекулярные и ионно-молекулярные уравнения реакций, протекающих в водных растворах, и укажите их типы. Приведите названия продуктов реакции и степени окисления элементов.

- 1. а) нитрат свинца(II) + иодид калия \rightarrow
 - б) железо + сульфат меди (II) \rightarrow
- 2. а) хлорид аммония + гидроксид натрия →
 - б) цинк + соляная кислота \rightarrow
- 3. a) сульфат аммония + гидроксид калия \rightarrow
 - б) нитрат серебра + медь \rightarrow
- а) сульфат железа (II) + гидроксид натрия →
 - б) гидроксид калия + диоксид углерода →
- 5. а) нитрат свинца (II) + сульфат натрия →
 - б) цинк + сульфат меди (II) \rightarrow
- 6. а) карбонат калия + соляная кислота →
 - б) железо + серная кислота →
- 7. а) дигидроксид меди + соляная кислота \rightarrow
 - б) карбонат кальция + диоксид углерода + вода \rightarrow
- 8. а) хлорид бария + сульфат калия \rightarrow
 - б) натрий + вода \rightarrow
- 9. а) гидроксид натрия + сульфат меди (II) →
 - б) магний + соляная кислота →
- 10. а) нитрат серебра + хлорид калия →
 - б) цинк + нитрат свинца (II) \rightarrow
- 11. а) гидроксид бария + азотная кислота →
 - б) кальций + вода \rightarrow
- 12. a) оксид серы (IV) + гидроксид калия \rightarrow
 - б) нитрат бария + сульфат железа (III) →

- 13. а) оксид кальция + вода →
 - б) сульфат железа(III) + гидроксид натрия →
 - 14. а) гидроксид цинка + бромоводородная кислота →
 - б) сульфат железа (II) + цинк \rightarrow
- 15. а) силикат натрия + серная кислота →
 - б) гидроксид магния + серная кислота →
- 16. а) карбонат кальция + азотная кислота →
 - б) соляная кислота + гидроксид меди (II) \rightarrow
- 17. а) нитрат серебра + железо →
 - б) гидроксид калия + хлорид аммония →
- а) серная кислота + гидрокарбонат натрия →
 - б) алюминий + хлорид меди (II) \rightarrow
- 19. а) карбонат магния + серная кислота →
 - б) нитрат свинца (II) + сульфат натрия →
- 20. a) гидроксид железа (II) + кислород + вода →
 - б) хлорид кальция + ортофосфат натрия →

По названиям соединений составьте их молекулярные и структурные формулы, укажите степени окисления элементов.

No Vincenzaria acces

л/п	Химические соединения	Π/Π	Химические соединения
1	гидроксид меди (II) гидроортофосфат натрия хромовая кислота	11	дигидрид кальция гидросульфит натрия азотистая кислота
2	пероксид калия дигидроортофосфат натрия серная кислота	12	сульфид меди (I) нитрат цинка хлорная кислота
3	оксид хрома (III) хлорид дигидроксоалюминия молибденовая кислота	13	пероксид водорода сульфат меди (II) дихромовая кислота
4	пентабромид фосфора сульфат гидроксохрома (III) дифосфорная кислота	14	диоксид марганца хлорид железа (III) сернистая кислота
5	перманганат калия гептаоксид хлора хлорил гидроксоалюминия	15	манганат кадия оксид железа (III) карбонат гидроксомеди

No	Химические соединения	Nº	Химические соединения
п/п		п/п	
6	пероксид натрия	16	диоксид углерода
	хлорат калия		сульфит натрия
	хлороводородная кислота		кремниевая кислота
7	хромат калия	17	диоксид кремния
	оксид серы (VI)		сульфат марганца
	сульфат олова (II)		сульфит калия
8	гидрокарбонат кальция	18	диоксид свинца
	гидроксид хелеза (III)		хлорид аммония
	сероводородная кислота		силикат натрия
9	сульфид алюминия	19	карбонат кальция
	хлорид гидроксоцинка		пероксид бария
	азотная кислота		нитрит натрия
10	оксид тантала (V)	20	дихромат калия
	гидрокарбонат натрия		диоксид серы
	селеновая кислота		гидроксид меди (II)

Тема 3. КОНТРОЛЬНАЯ РАБОТА

Следует знать нижеперечисленные понятия и определения: атом, химический элемент, атомная орбиталь, тип элемента, электронная формула (полная, сокращенная и в виде энергетических ячеек), закономерности формирования энергетических уровней и подуровней, принцип минимума энергии, принцип Паули, правило Хунда, квантовые числа, формы атомных орбиталей, электронные аналоги, валентность, «орбитальный» атомный радиус, энергия ионизации и сродства к электрону, электроотрицательность, химическая связь (ковалентная, ионная, металлическая), σ - и π -связь, степень окисления, структурная формула вещества, электролитическая диссоциация, сильные и слабые электролиты (кислоты основания и соли), ионно-молекулярные уравнения реакций.

Вопрос 1

Для заданных элементов:

а) составьте сокращенные электронные формулы в виде энергетических ячеек для основного состояния и состояния, соответствую-

щего максимальной валентности, в каждом случае укажите число валентных электронов; б) определите тип элемента (s, p, d, f), укажите, относится он к металлам или неметаллам; для неметалла дайте характеристику валентных электронов с помощью квантовых чисел (для высшей валентности); в) составьте химические и структурные формулы оксидов этих элементов для их высшей валентности с использованием значений электроотрицательности (приложение, табл. 4); г) укажите типы химических связей в этих оксидах.

No	Элементы	Nº	Элементы	Nº	Элементы	Nº	Элементы
п/п		п/п		п/п		п/п	
1	Na и O	6	Ва и 0	11	Сs и Se	16	Rb и Br
2	СаиР	7	LiиI	12	Na и S	17	LiиF
3	Na и C1	8	ВаиI	13	Sr и Br	18	RbиP
4	Ки Se	9	КиС1	14	КиГ	19	СѕиС
5	LiиS	10	Са и As	15	Sr и C	20	RbиB

Вопрос 2В таблице приведены символы химических элементов.

No	Элементы	No	Элементы	Nº	Элементы	Nº	Элементы
п/п		п/п		п/п		п/п	
1	Li, Na	6	Sc, V	11	Rb, Sr	16	Ba, Hg
2	K, Cu	7	Rb, Ag	12	P, S	17	Cd, In
3	B, C	8	Ga, As	13	Al, Si	18	Rb, Cs
4	Sr, Cd	9	N, O	14	Ca, Zn	19	Zn, Ga
5	O, F	10	Se, Br	15	Cs, Au	20	Ca, Ba

С использованием Периодической системы определите, какой из двух элементов обладает: а) большим «орбитальным» атомным радиусом; б) более высокой энергией ионизации; в) более высокой электроотрицательностью. Ответы обоснуйте.

Вопрос 3

Для заданных ниже соединений: а) укажите степени окисления элементов, б) составьте структурные формулы, в) рассчитайте массовую долю кислорода в последнем соединении.

1. Na₂O₂, Na₄Si, Na₂SiO₃

3. CaH_2 , P_2O_5 , $Ca_3(PO_4)_2$

Ca₃P₂, H₂, Ca(H₂PO₄)₂

7. Cl₂O₇, NaCl, NaClO₄ 9. Cs₂O₂, CsCl, CsClO₃

11.SO₂, H₂S, H₂SO₄

13.Mg₃N₂, NO₂, MgSO₄

15.SiH₄, SiO₂, H₂SiO₃

17.BaO₂, Ba(OH)₂, Ba₃(PO₄)₂

19.O₂, H₂O₂, H₂SO₃

2. Fe₂O₃, NH₃, Ca(OH)₂

4. Rb₂O₂, KMnO₄, Rb₂CO₃

6. Br₂, HBrO, KBrO₃

8. KOH, K₂O₂, KH₂PO₄

10.Li₂O₂, Li₂SO₃, Li₂SO₄ 12.N₂, NO, (CuOH)₂CO₃

14.CO₂, CaC₂, H₂CO₃

16.F₂, Na₂Cr₂O₇, OF₂

18.B₂O₃, H₃BO₃, NaBO₂

20.I₂, I₂O₇, KIO₃

Вопрос 4

Среди перечисленных ниже веществ укажите сильные и слабые электролиты. Запишите уравнения их диссоциации, условно обозначая диссоциацию сильных электролитов одной стрелкой \rightarrow , а слабых электролитов - двумя стрелками

HCl, Na₂SiO₃, NaHSiO₃

H₂SO₄, Na₂SO₄, CrOHSO₄

5. HNO₃, H₂CO₃, NaHCO₃

7. Zn(OH)₂, ZnCl₂, ZnOHCl

9. HClO₄, Ba(OH)₂, KHSiO₃

11.H₃PO₄, Na₂HPO₄, NaOH

13.Al(OH)₃, AlCl₃, AlOHCl₂

15.H₃AsO₄, K₃AsO₄, FeOHSO₄

19.Cu(OH)₂, CuCl₂, CuOHNO₃

H₃PO₄, Na₃PO₄, NaH₂PO₄

4. HBr, AlBr₃, AlOHBr₂

6. KOH, Cd(OH)₂, (CdOH)₂SO₄

8. H₃AsO₄, Na₂HAsO₄, RbOH

10.CH₃COOH, CH₃COONa, ZnCl₂ 12.NH₄OH, NH₄Cl, KHCO₃

14.Cr(OH)₃, Cr(OH)₂Cl, K₂SO₄

16.HCN, KCN, FeOHCl₂

17.H₂SiO₃, Ca(OH)₂, (NiOH)₂SO₄ 18.Fe(OH)₃, Fe₂(SO₄)₃, NaHSiO₃

20. Al(OH)3, AlCl3, AlOHSO4

Вопрос 5

реакций. Для Напишите уравнения окислительновосстановительных реакций (ОВР) составьте электронный баланс.

1. Na + S
$$\rightarrow$$

$$SO_3 + H_2O \rightarrow$$

 $Na_2O + SO_2 \rightarrow$

$$NaOH + SO_3 \rightarrow$$

$$NaOH + H_2SO_4 \rightarrow$$

2.
$$K + H_2O \rightarrow$$

$$K_2O + P_2O_5 \rightarrow$$

$$P_2O_5 + H_2O \rightarrow$$

$$K_2O + H_3PO_4 \rightarrow$$

KOH +
$$H_3PO_4$$
(изб.) \rightarrow

$$CaO + H_2O \rightarrow$$

 $Ca(OH)_2 + HC1 \rightarrow$
 $Ca(OH)_2 \downarrow + CO_2(изб.) \rightarrow$

3. Ca + Cl₂ \rightarrow

 $CaO + CO_2 \rightarrow$

5. $Cs_2O + CO_2 \rightarrow$

 $CO_2 + H_2O \rightarrow$

$$C_S + H_2O \rightarrow$$
 $C_aCl_2 + CO_2 + H_2O \rightarrow$
 $B_aCO_3 + HCl \rightarrow$

7.
$$Mg + N_2 \xrightarrow{l}$$
 $MgO + H_2O \xrightarrow{l}$
 $Mg + H_2O \rightarrow$

$$Mg + H_2O \rightarrow$$

 $Mg(OH)_2 \downarrow + HNO_3 \rightarrow$
 $Mg + HNO_3 \rightarrow N_2 + ...$

9.
$$Ba + H_2O \rightarrow$$

 $BaO + SO_3 \rightarrow$
 $Ba(OH)_2 + SO_2 \rightarrow$
 $Ba(OH)_2 + H_2SO_4(\mu 36.) \rightarrow$
 $BaCO_3 + HCl \rightarrow$

$$11.Mg + H_2O \xrightarrow{l} MgO + SO_2 \xrightarrow{l}$$

$$MgO + SO_2 \longrightarrow Mg(OH)_2 \downarrow + SO_3 \rightarrow MgO + H_2SO_4 \rightarrow Mg(OH)_2 \downarrow + H_2SO_4 \rightarrow Mg(OH)_2 \rightarrow Mg($$

$$MgO + H_2SO_4 \rightarrow$$
 $Mg(OH)_2 \downarrow + H_2SO_4$ (изб.) \rightarrow
13.K + S \rightarrow

$$K + H_2O \rightarrow$$

 $K_2O + SO_2 \rightarrow$
 $K_2O + H_2SO_4(изб.) \rightarrow$
 $K + H_2SO_4(конц.) \rightarrow S + ...$

NaOH+Si+H₂O
$$\xrightarrow{t}$$
 H₂+...
Na₂SiO₃ + HCl \rightarrow
10.Ca + P \rightarrow

$$0.Ca + P \rightarrow CaO + H_2O \rightarrow CaO + RO + RO \rightarrow CaO + RO \rightarrow CA$$

4. Na + Cl₂ \rightarrow

6. Li + S \rightarrow

 $Na_2O + H_2O \rightarrow$

Na₂O + HCl →

 $NaOH + SO_2 \rightarrow$

 $Li_2O + SO_3 \rightarrow$

 $Li_2O + H_2SO_4 \rightarrow$

 $Na_2O + SiO_2 \xrightarrow{l}$

 $Li + H_2O \rightarrow$ $SO_3 + H_2O \rightarrow$

8. Na + O₂ \xrightarrow{t}

 $H_2SiO_3 \xrightarrow{t}$

 $Na + H_2O \rightarrow$

$$CaO + H2O \rightarrow$$

$$CaO + P2O5 \rightarrow$$

$$CaCl2 + Na3PO4 \rightarrow$$

$$12.CaO + SO_3 \rightarrow$$

$$CaO + H_2O \rightarrow$$

$$Ca(OH)_2 \downarrow + SO_3 \rightarrow$$

 $CaCl_2 + K_2SO_4 \rightarrow$

LiOH + HNO₃ →

 $N_2O_5 + H_2O \rightarrow$

 $Ca(OH)_2 \downarrow + H_3PO_4(изб.) \rightarrow$

Са +
$$H_2$$
SO₄(конц.) → S +...
14.Li + N₂ →

$$LiOH + N_2O_5 \rightarrow$$

 $Li + H_2O \rightarrow$

$$\begin{array}{lll} MgO + P_2O_5 \rightarrow & Cs_2O + H_2O \rightarrow \\ P_2O_5 + H_2O \rightarrow & CsOH + H_2SO_4 \rightarrow \\ Mg(OH)_2 \downarrow + P_2O_5 \rightarrow & CsOH + H_2SO_4(u36.) \rightarrow \\ Mg(OH)_2 \downarrow + H_3PO_4(u36.) \rightarrow & Cl_2O_7 + H_2O \rightarrow \\ 17.Na + F_2 \rightarrow & 18.Ba + P \rightarrow \\ F_2 + H_2O \rightarrow & P_2O_5 + H_2O \rightarrow \\ Na + H_2O \rightarrow & Ba(OH)_2 + P_2O_5 \rightarrow \\ Na_2O + F_2 \rightarrow & BaCl_2 + Na_3PO_4 \rightarrow \\ NaOH + HF \rightarrow & Ba(OH)_2 + H_3PO_4(u36.) \rightarrow \\ 19.Na + P \rightarrow & Ba(OH)_2 + H_3PO_4(u36.) \rightarrow \\ 19.Na + P \rightarrow & Cl_2 \rightarrow & K + H_2O \rightarrow \\ Na_2O + P_2O_5 \rightarrow & KOH + MgCl_2 \rightarrow \\ NaOH + H_3PO_4 \rightarrow & K_2O + HCl \rightarrow \\ Cl_2 + H_2O \rightarrow & Pb(NO_3)_2 + Na_3PO_4 \rightarrow \\ \end{array}$$

 $16.Cs + Cl_2 \rightarrow$

Тема 4. ЗАКОНЫ СТЕХИОМЕТРИИ (I)

Изучите следующие понятия и определения: количество вещества, закон стехиометрических соотношений, концентрация (массовая доля, молярная, моляльная, мольная доля), титриметрия, индикатор, рН.

Вопрос 1

15.Mg + P \rightarrow

Укажите отношение количеств реагирующих между собой веществ и образующихся продуктов. Определите, какой объем раствора кислоты с молярной концентрацией $C(\kappa)$ пойдет на титрование 10 мл раствора основания с молярной концентрацией C(0).

No	Уравнение реакции	<i>C</i> (к),	<i>C</i> (o),
п/п		моль/л	моль/л
1	$H_3PO_4 + NaOH \rightarrow NaH_2PO_4 +$	0,1	0,01
2	$H_3PO_4 + NaOH \rightarrow Na_2HPO_4 +$	Q,O1	0,004
3	$H_3PO_4 + NaOH \rightarrow Na_3PO_4 +$	0,1	0,09

окончание

N₂	Уравнение реакции	<i>C</i> (к),	C(0),
11/11		моль/л	моль/л
4	$Ca(OH)_2 + H_3PO_4 \rightarrow Ca(H_2PO_4)_2 + \dots$	0,5	0,1
5	$Ca(OH)_2 + H_3PO_4 \rightarrow CaHPO_4 + \dots$	0,2	0,1
6	$Ca(OH)_2 + H_3PO_4 \rightarrow Ca_3(PO_4)_2 + \dots$	1,0	0,9
7	$Ca(OH)_2 + H_3PO_4 \rightarrow (CaOH)_3PO_4 + \dots$	0,1	0,21
8	$H_2SO_4 + Ba(OH)_2 \rightarrow (BaOH)_2SO_4 + \dots$	0,1	0,16
9	$H_2SO_4 + Ba(OH)_2 \rightarrow Ba(HSO_4)_2 + \dots$	2,0	0,9
10	$H_2SO_4 + Ba(OH)_2 \rightarrow BaSO_4 + \dots$	0,1	0,1
11	$H_3AsO_4 + KOH \rightarrow KH_2AsO_4 +$	0,1	0,11
12	$H_3AsO_4 + KOH \rightarrow K_2HAsO_4 +$	0,1	0,24
13	$H_3AsO_4 + KOH \rightarrow K_3AsO_4 + \dots$	0,1	0,39
14	$NH_4OH + H_2SO_4 \rightarrow (NH_4)_2SO_4 + \dots$	0,1	0,28
15	$Ca(OH)_2 + H_2SO_4 \rightarrow Ca(HSO_4)_2 + \dots$	2,0	1,5
16	$NaOH + H_2SO_4 \rightarrow Na_2SO_4 + \dots$	0,1	0,32
17	$Ba(OH)_2 + H_3PO_3 \rightarrow Ba(H_2PO_3)_2 + \dots$	0,2	0,17
18	$Ba(OH)_2 + H_3PO_3 \rightarrow BaHPO_3 + \dots$	0,1	0,18
19	$Ba(OH)_2 + H_3PO_3 \rightarrow (BaOH)_3PO_3 + \dots$	0,1	0,57
20	$Ba(OH)_2 + H_3PO_3 \rightarrow Ba_3(PO_3)_2 + \dots$	0,5	1,5

Вопрос 2

Определите молярную концентрацию раствора окислителя, если на титрование 10 мл этого раствора пошло V(B) мл раствора восстановителя с молярной концентрацией C(B).

№	Уравнение реакции	V(B)	<i>C</i> (B),
п/п		МЛ	моль/л
1	$K_2Cr_2O_7 + H_2S + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + S + K_2SO_4 + H_2O$	10	0,3
2	$FeSO_4 + KClO_3 + H_2SO_4 \rightarrow KCl + Fe_2(SO_4)_3 + H_2O$	6	2
3	$H_2S + Na_2SO_3 + H_2SO_4 \rightarrow S + Na_2SO_4 + H_2O$	10	0,6
4	$KIO_3 + H_2SO_3 \rightarrow I_2 + K_2SO_4 + H_2O + H_2SO_4$	10	1

		ок	ончание
No	Уравнение реакции	V(B)	<i>C</i> (B),
n/n		мл	моль/л
5	$K_2Cr_2O_7 + KI + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + I_2 + K_2SO_4 + H_2O$	20	1,5
6	$HIO_3 + FeSO_4 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + I_2 + H_2O$	20	1,5
7	$K_2SO_3 + KMnO_4 + H_2SO_4 \rightarrow MnSO_4 + K_2SO_4 + H_2O$	25	0,7
8	$K_2SO_3 + KMnO_4 + H_2O \rightarrow MnO_2 + K_2SO_4 + KOH$	12	1
9	$K_2SO_3 + KMnO_4 + KOH \rightarrow K_2MnO_4 + K_2SO_4 + H_2O$	10	0,45
10	$KMnO_4+H_2C_2O_4+H_2SO_4 \rightarrow MnSO_4+K_2SO_4+CO_2+H_2O$	25	1,0
11	$KMnO_4+NaNO_2+H_2SO_4 \rightarrow MnSO_4+NaNO_3+K_2SO_4+H_2O$	25	0,11
12	$KMnO_4 + KBr + H_2SO_4 \rightarrow MnSO_4 + Br_2 + K_2SO_4 + H_2O$	10	0,6
13	$KMnO_4 + FeSO_4 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + MnSO_4 + K_2SO_4 + H_2O$	10	0,65
14	$\overline{\text{KNO}_2 + \text{KI} + \text{H}_2\text{SO}_4} \rightarrow \overline{\text{NO} + \text{I}_2 + \text{K}_2\text{SO}_4 + \text{H}_2\text{O}}$	14	0,1
15	$KMnO_4 + H_2O_2 + H_2SO_4 \rightarrow MnSO_4 + O_2 + K_2SO_4 + H_2O$	5	0,75
16	$H_2S + H_2O_2 \rightarrow H_2SO_4 + H_2O$	10	0,04
17	$FeSO_4 + KIO_3 + H_2SO_4 \rightarrow KI + Fe_2(SO_4)_3 + H_2O$	20,4	0,5
18	$K_2Cr_2O_7 + H_2O_2 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + O_2 + K_2SO_4 + H_2O$	10	0,54
19	$HOC1 + H_2O_2 \rightarrow HC1 + O_2 + H_2O$	5	0,38

20

Определите молярные концентрации катинов и анионов в растворе вещества B, если известны молярная концентрация C(B) и степень электролитической диссоциации $\alpha(B)$.

10

1,0

 $KMnO_4 + KI + H_2SO_4 \rightarrow I_2 + MnSO_4 + K_2SO_4 + H_2O$

No	В	$C(\mathbf{B}),$	α(B)	No	В	<i>C</i> (B),	α(B)
_п/п		моль/л		п/п		моль/л	
_1	HC1	0,06	1,0	11	Na ₃ PO ₄	0,03	1,0
2	CH ₃ COOH	0,01	0,04	12	CH₃COOH	10,0	0,0013
_3	CuSO ₄	0,1	1,0	13	AlCl ₃	0,08	1,0
4	HCN	0,1	7,8·10 ⁻⁵	14	HIO ₃	1,0	4,7·10 ⁻⁶
_ 5	CaCl ₂	0,2	1,0	15	Cu(NO ₃) ₂	0,05	1,0
6	NH₄OH	6,0	0,0017	16	H ₂ CO ₃	0,01	0,0067
7	K ₂ SO ₄	0,15	1,0	17	K ₂ CO ₃	0,25	1,0

N₂	В	<i>C</i> (B),	α(B)	No	В	C(B),	α(B)
п/п		моль/л	`	п/п		моль/л	` _
8	H ₂ S	0,1	0,001	18	HCN	0,01	0,00024
9	H ₂ SO ₄	0,035	1,0	19	$(NH_4)_2SO_4$	1,25	1,0
10	HF	1,0	0,026	20	H ₂ S	0,01	0,003

Тема 5. ЗАКОНЫ СТЕХИОМЕТРИИ (II)

Определите объем раствора вещества B с молярной концентрацией C(B), необходимый для приготовления $V_1(B)$ мл раствора с молярной концентрацией $C_1(B)$.

No	В	<i>C</i> (B),	$C_1(B)$,	$V_1(B)$,
п/п		моль/л	моль/л	мл
1	NaOH	0,1	0,01	100
2	HCl	0,2	0,02	200
3	$H_2C_2O_4$	0,4	0,12	100
4	KMnO ₄	0,25	0,10	100
5	H ₃ PO ₄	0,4	0,04	500
6	Ca(OH) ₂	0,1	0,05	120
7	K ₂ Cr ₂ O ₇	0,6	0,12	350
8	H ₂ SO ₄	0,5	0,25	160
9	КОН	0,1	0,03	300
10	Na ₂ CO ₃	0,5	0,1	500
11	KCl	0,2	0,2	110
12	BaSO ₄	0,4	0,2	240
13	CH ₃ COONa	0,6	0,4	200
14	Na ₂ SO ₄	0,25	0,5	700
15	NaCl	0,1	0,3	500
16	NH ₄ Cl	0,2	0,8	400
17	NaNO ₃	0,2	0,4	650
18	KF	0,25	0,1	450
19	CuSO ₄	0,3	0,6	950
20	NH ₄ NO ₃	0.1	0,5	400

Определите массу m вещества B, необходимую для приготовления V(B) мл раствора с молярной концентрацией C(B).

№	В	M(B),	<i>C</i> (B),	V(B),
п/п		г/моль	моль/л	мл
1	HC1	36,5	0,137	200
2	H ₂ SO ₄	98	0,680	300
3	H ₃ PO ₄	98	0,204	150
4	H ₂ SO ₃	82	0,488	100
5	Na ₂ S ₂ O ₃	158	0,127	250
6	NH ₄ NO ₃	80	0,214	350
7	KBr	119	0,118	500
8	K ₂ SO ₄	174	0,306	150
9	CuSO ₄	159,5	0,564	100
10	CaCl ₂	111	0,450	200
11	Na ₃ PO ₄	164	0,134	500
12	NaOH	40	0,150	200
13	Na ₂ SO ₄	142	0,915	100
14	BaCl ₂	207	0,277	250
15	КОН	56	0,893	300
16	NaCl	58,5	0,547	500
17	FeCl ₃	162	0,525	200
18	K ₂ SO ₄	174	0,104	100
19	КОН	56	0,136	250
20	CuCl ₂	134,5	0,495	300

Вопрос 3

Рассчитайте молярную концентрацию раствора вещества B, если известны массовая доля растворенного вещества ω (B) и плотность раствора ρ (B)

No	В	ω(B),	ρ(B),	No	В	ω(B), %	ρ(B),
п/п		%	г/мл	п/п			г/мл
1	Na ₂ CO ₃	9,75	1,10	11	HNO ₃	52,56	1,32
2	Na ₂ CO ₃	17,7	1,19	12	H ₂ SO ₄	72,09	1,63
3	NH ₃	5,25	0,98	13	H ₂ SO ₄	75,92	1,68
4	KOH	19,35	1,18	14	H ₃ PO ₄	82,96	1,66
_ 5	KOH	23,38	1,22	15	H ₃ PO ₄	86,38	1,70

N₂	В	ω(B),	ρ(B),	No	В	ω(B), %	ρ(B),
n/n		%	г/мл	n/n			г/мл
6	NaOH	19,62	1,21	16	CH₃COOH	91,2	1,07
7	NaOH	22,36	1,24	17	CH₃COOH	98,0	1,06
8	HClO ₄	54,79	1,47	18	NaOH	47,85	1,50
9	HClO ₄	59,28	1,53	19	H ₃ PO ₄	100,0	1,87
10	HNO ₃	48,42	1,30	20	HNO ₃	85,5	1,47

Тема 6. ХИМИЧЕСКОЕ РАВНОВЕСИЕ

Изучите следующие понятия и определения: закон действия масс для химического равновесия, термодинамическая и концентрационные константы равновесия, активность и коэффициент активности, константы диссоциации и гидролиза, константа ионного произведения воды, растворимость и произведение растворимости, степень превращения вещества (степень гидролиза, степень электролитической диссоциации).

Вопрос 1

Для равновесных химических процессов: а) напишите уравнения закона действия масс (K_a , а также K_C или K_p); б) укажите, изменение каких факторов (концентрация реагентов, давление, температура) приведет к изменению значения термодинамической константы равновесия; в) укажите направление смещения равновесия при увеличении давления в системе.

1.
$$Na_3PO_4(p-p) + H_2O(x) \rightleftharpoons Na_2HPO_4(p-p) + NaOH(p-p)$$

 $Al_2(CO_3)_3(TB) \rightleftharpoons Al_2O_3(TB) + 3CO_2(\Gamma)$

2.
$$H_2SO_3(p-p) \rightleftharpoons H^+(p-p) + HSO_3^-(p-p)$$

 $CO(\Gamma) + 2H_2(\Gamma) \rightleftharpoons CH_3OH(\pi)$

3.
$$HCO_3^-(p-p) + H^+(p-p) \rightleftharpoons H_2CO_3(p-p)$$

 $CuCO_3(TB) \rightleftharpoons CuO(TB) + CO_2(\Gamma)$

4.
$$La_{2}(CO_{3})_{3}(TB) \rightleftharpoons 2La^{3+}(p-p) + 3CO_{3}^{2-}(p-p)$$

 $2H_{2}(r) + O_{2}(r) \rightleftharpoons 2H_{2}O(r)$
5. $Cu(OH)_{2}(TB) \rightleftharpoons Cu^{2+}(p-p) + 2OH^{-}(p-p)$
 $N_{2}(r) + 3H_{2}(r) \rightleftharpoons 2NH_{3}(r)$
6. $Ag_{2}SO_{4}(TB) \rightleftharpoons 2Ag^{+}(p-p) + SO_{4}^{2-}(p-p)$
 $ZnO(TB) + H_{2}(r) \rightleftharpoons Zn(TB) + H_{2}O(r)$
7. $Ni(OH)_{2}(TB) + 2HC1 \rightleftharpoons NiCl_{2}(p-p) + 2H_{2}O(x)$
 $2SO_{2}(r) + O_{2}(r) \rightleftharpoons 2SO_{3}(r)$
8. $FeCl_{3}(p-p) + H_{2}O(x) \rightleftharpoons FeOHCl_{2}(p-p) + HCl(p-p)$
 $La_{2}(CO_{3})_{3}(TB) \rightleftharpoons La_{2}O_{3}(TB) + 3CO_{2}(r)$
9. $ZnOH^{+}(p-p) \rightleftharpoons Zn^{2+}(p-p) + OH^{-}(p-p)$
 $6CO_{2}(r) + 6H_{2}O(x) \rightleftharpoons C_{6}H_{12}O_{6}(TB) + 6O_{2}(r)$

 $NH_4NO_2(TB) \neq N_2(\Gamma) + 2H_2O(\Gamma)$

 $N_2(\Gamma) + O_2(\Gamma) \not\supseteq 2NO(\Gamma)$

13. $Cu(NO_3)_2(p-p) + H_2O(*) \rightleftharpoons CuOHNO_3(p-p) + HNO_3(p-p)$ $S(TB) + 2H_2O(r) \rightleftharpoons SO_2(r) + 2H_2(r)$

10. Al Cl₃(p-p) + H₂O(\times) \rightleftharpoons AlOHCl₂(p-p) + HCl(p-p)

- 14. $K_2CO_3(p-p) + H_2O(*) \rightleftharpoons KHCO_3(p-p) + KOH(p-p)$ $CH_4(r) + H_2O(r) \rightleftharpoons CO(r) + 3H_2(r)$
- 15. $C_2H_5OH(x) \rightleftharpoons C_2H_4(r) + H_2O(r)$ $2N_2(r) + 6H_2O(r) \rightleftharpoons 4NH_3(r) + 3O_2(r)$
- 16. $H_3PO_4(p-p) \rightleftharpoons H_2PO_4^-(p-p) + H^+(p-p)$ $4CO(r) + 2SO_2(r) \rightleftharpoons S_2(rB) + 4CO_2(r)$

17.
$$3 \text{Ag NO}_3(p-p) + \text{Na}_3 \text{PO}_4(p-p) \rightleftharpoons \text{Ag}_3 \text{PO}_4(\text{TB}) + 3 \text{Na}_3(p-p) + 3 \text{Na}_3(p-p) \rightleftharpoons 2 \text{Na}_2(p) + 6 \text{Ha}_2(p) \rightleftharpoons 2 \text{Na}_2(p) + 6 \text{Na}_2(p) \rightleftharpoons 2 \text{Na}_2(p) = 2 \text{Na}_2(p) + 6 \text{Na}_2(p) = 2 \text{Na}_2(p) + 6 \text{Na}_2(p) = 2 \text$$

18.
$$Cu(NO_3)_2(p-p) + 2KOH(p-p) \rightleftarrows Cu(OH)_2(TB) + 2KNO_3(p-p)$$

 $4NO(r) + 6H_2O(r) \rightleftarrows 4NH_3(r) + 5O_2(r)$

19.
$$Mg(OH)_2(TB) \rightleftharpoons MgO(TB) + H_2O(\Gamma)$$

 $CO_2(\Gamma) + 3H_2(\Gamma) \rightleftharpoons CH_3OH(\Gamma) + H_2O(\Gamma)$

20.
$$PbI_2(TB) \rightleftharpoons Pb^{2+}(p-p) + 2I^{-}(p-p)$$

 $ZnO(TB) + H_2(\Gamma) \rightleftharpoons Zn(TB) + H_2O(xc)$

Запишите уравнение диссоциации слабого электролита. Определите pH раствора слабой кислоты или основания, если известны его молярная концентрация (C) и константа диссоциации (K_{π}) . Для многоосновных кислот и оснований в расчете можно принять во внимание только первую ступень диссоциации.

Nº	Соединение	С, моль/л	Кд
п/п			
1	HBrO	0,1	2,2·10 -9
2	HCN	0,2	4,93·10 -10
3	HAsO ₂	0,1	6,03·10 ⁻¹⁰
4	HIO	0,5	2,8-10-11
5	NH₄OH	1,0	1,75·10 -5
6	CH ₃ COOH	0,2	1,7·10 -5
7	H ₃ PO ₄	0,1	$7,1\cdot10^{-3}$ (K _{д1})
8	C ₆ H ₅ NH ₃ OH	0,01	4,3-10 ⁻¹⁰
9	H ₂ CO ₃	0,2	$4,5\cdot10^{-7} (K_{\mu 1})$
10	(CH ₃) ₂ NH ₂ OH	0,01	5,4·10 ⁻⁴

Запишите уравнение гетерогенного равновесия для раствора труднорастворимого соединения. Определите растворимость соединения и концентрацию ионов металла в его насыщенном растворе (моль/л) по величине произведения растворимости (ПР).

Nº	Соединение	ПР	№	Соединение	ПР
п/п			n/n		
11	Ba ₃ PO ₄) ₂	6.10 -39	16	Li ₃ PO ₄	3,2.10-9
12	Ag ₃ PO ₄	1,3.10-20	17	PbI ₂	1,1-10-9
13	CaF ₂	4.10 -11	18	$Th_3(PO_4)_4$	2,6.10 -79
14	Cu ₂ S	2,5.10 48	19	$Ca_3(PO_4)_2$	2-10 -29
15	$La_2(CO_3)_3$	4.10 -34	20	Ag ₂ CO ₃	1,2.10 -12

Для солей, склонных к гидролизу, напишите молекулярные и ионно-молекулярные уравнения гидролиза.

№ п/п	Соединение	No	Соединение
		n/n	
1	K ₂ SO ₄ , K ₂ CO ₃ , Fe(OH) ₂ Cl	11	RbCl, KHSO ₃ , FeCl ₃
2	Na ₂ S, NaCl, CdOHCl	12	NaH ₂ PO ₄ , CdCl ₂ , Cs ₂ SO ₄
3	Na ₃ PO ₄ , AlOHSO ₄ , RbNO ₃	13	Na ₂ HAsO ₄ , CaBr ₂ , CoSO ₄
4	Na ₂ SiO ₃ , CrOHCl ₂ , A1Cl ₃	14	CaI ₂ , NaH ₂ AsO ₄ , Ba(NO ₃) ₂
5	LiCl, K ₂ SO ₃ , (CoOH) ₂ SO ₄	15	Na ₂ SO ₃ , SrCl ₂ , Al ₂ (SO ₄) ₃
6	Na ₃ AsO ₄ , CrOHSO ₄ , CsBr	16	NaBr, K ₂ S, A1(OH) ₂ C1
7	CaCl ₂ , KHCO ₃ , NiOHNO ₃	17	K ₃ PO ₄ , KC1, FeOHSO ₄
8	NaHS, Rb ₂ SO ₄ , Ni(NO ₃) ₂	18	K ₂ SiO ₃ , (ZnOH) ₂ SO ₄ , Nal
9	Sr(NO ₃) ₂ , Na ₂ HPO ₄ , ZnSO ₄	19	CsBr, Na ₂ CO ₃ , CuOHNO ₃
10	NaHSiO ₃ , Cu(NO ₃) ₂ , NaBr	20	K ₂ HAsO ₄ , Ca(NO ₃) ₂ , FeCl ₃

Тема 7. ХИМИЧЕСКАЯ КИНЕТИКА

Изучите следующие понятия и определения: скорость химической реакции, закон действия масс для кинетики, порядок и молекулярность реакции, константа скорости, уравнение скорости первого порядка, энергия активации, коэффициент Вант-Гоффа, катализ.

Вопрос 1

Объясните, какая из двух приведенных реакций имеет:

- А. Меньшую энергию активации?
- 1. a) $ClO^{-}(p-p) + Br^{-}(p-p) \rightarrow BrO^{-}(p-p) + Cl^{-}(p-p)$;
 - δ) Cl·(Γ) + Cl· (Γ) → Cl₂ (Γ);

- а) HI (p-p) + KOH (p-p) \rightarrow KI (p-p) + H₂O (ж);
- б) $(CH_3CO)_2O(ж) + H_2O(ж) \rightarrow 2CH_3COOH(p-p);$
- a) $AgNO_3(p-p) + KI(p-p) \xrightarrow{H_2O} AgI(TB) + KNO_3(p-p)$ 3.
 - δ) AgNO₃ (p-p) + I₂ (p-p) $\xrightarrow{C_2H_3OH}$ AgI (TB) + lNO₃ (p-p)
- a) NaOH (p-p) + HCl (p-p) \rightarrow NaCl (p-p) + H₂O (ж); 4. 6) Na (TB) + CH₃Cl (Γ) \rightarrow NaCl(TB) + CH₃· (Γ);
- 5. a) $CH_3COOH(\mathbf{x}) + C_2H_5OH(\mathbf{x}) \rightarrow CH_3COOC_2H_5(\mathbf{x}) + H_2O(\mathbf{x})$;
 - 6) $Na_2SO_4(p-p) + BaCl_2(p-p) \rightarrow BaSO_4(TB) + 2NaCl(p-p)$;
- 6. a) $H_2O(x) + Cl_2(r) \rightarrow HCl(p-p) + HClO(p-p)$; 6) $2Na \cdot (\Gamma) + Cl_2(\Gamma) \rightarrow 2NaCl(TB)$;
- a) $ClO^{-}(p-p) + Br^{-}(p-p) \to BrO^{-}(p-p) + Cl^{-}(p-p);$ 7.
 - 6) $\text{ClO}^{-}(p-p) + \text{H}^{+}(p-p) \rightarrow \text{HClO}(p-p);$
- a) $H_2O(x) \to H^+(p-p) + OH^-(p-p)$; 8. б) NaOH (p-p) + HNO₃ (p-p) \rightarrow NaNO₃ (p-p) + H₂O (ж);
- a) H· (r) + CH₃· (r) \rightarrow CH₄(r); 9.
 - δ) HI (r) + C_2H_4 (r) → C_2H_5I (r);
- 10. a) $2H_2(\Gamma) + O_2(\Gamma) \rightarrow 2H_2O(\Gamma)$; δ) H· (r) + HO· (r) → H₂O (r);

Б. Меньшую скорость?

- 11. a) $2Na \cdot (r) + H_2(r) \rightarrow 2NaH(TB)$;
 - δ) $3H_2(Γ) + N_2(Γ) → 2NH_3(Γ)$;
- 12. a) $C_2H_4(\Gamma) + H_2(\Gamma) \rightarrow C_2H_6(\Gamma)$
- 6) $CH_{3'} + H_{2}(\Gamma) \rightarrow CH_{4}(\Gamma) + H_{1}(\Gamma)$;
- 13. a) Ca (TB) + $2H_2O(x) \rightarrow Ca(OH)_2(TB) + H_2(r)$;
- 6) $CaCl_2(p-p) + K_2CO_3(p-p) \rightarrow CaCO_3(TB) + 2KCl(p-p);$
- 14. a) $3H_2(\Gamma) + N_2(\Gamma) \rightarrow 2NH_3(\Gamma)$;
 - 6) KNO_3 (p-p) + $HClO_4$ (p-p) $\rightarrow KClO_4$ (TB) + HNO_3 (p-p);
- 15. a) C (TB) + H₂O (Γ) \rightarrow H₂ (Γ) + CO (Γ);
 - б) K_2CO_3 (p-p) +2HCl (p-p) $\rightarrow CO_2$ (r) +H₂O (ж) +2KCl (p-p)
- 16. a) NH_4^+ (p-p) $+OH_4^-$ (p-p) $\to NH_4OH$ (p-p);
 - 6) H· (r) + Cl₂ (r) \rightarrow HCl (r) + Cl· (r);

- 17. a) $ClO^{-}(p-p) + Br^{-}(p-p) \rightarrow BrO^{-}(p-p) + Cl^{-}(p-p);$
 - 6) Cl· (r) + Cl· (r) \rightarrow Cl₂ (r);
- 18. a) H· (r) + CH₃· (r) \rightarrow CH₄ (r);
 - 6) HI (Γ) + C₂H₄ (Γ) \rightarrow C₂H₅I (Γ);
- 19. a) $AgNO_3(p-p) + KI(p-p) \xrightarrow{H_2O} AgI(TB) + KNO_3(p-p);$
 - 6) $AgNO_3 (p-p) + I_2 (p-p) \xrightarrow{C_2H_5OH} AgI (TB) + INO_3 (p-p);$
- 20. a) $2H_2(\Gamma) + O_2(\Gamma) \rightarrow 2H_2O(\Gamma)$;
 - 6) H· (Γ) + HO·(Γ) \rightarrow H₂O (Γ).

Используя закон действия масс, определите, во сколько раз изменится скорость указанных простых реакций при изменении условий эксперимента. Укажите молекулярность, частные и общий порядки реакции.

No	Реакция	Изменение условий эксперимента
п/п		
1	$2NO \uparrow + Cl_2 \uparrow \rightarrow 2NOC1 \uparrow$	При сжатии смеси в 3 раза
2	$2NO\uparrow + Cl_2\uparrow \rightarrow 2NOCl\uparrow$	При росте P _{NO} в 2 раза (V=const)
3	$2NO^{\uparrow} + Cl_2^{\uparrow} \rightarrow 2NOCl^{\uparrow}$	При добавлении трех молей инертно-
		го газа (V=const)
4	$H_2\uparrow +2NO\uparrow \rightarrow N_2O\uparrow +H_2O\uparrow$	При трехкратном разбавлении
		(P =const)
5	$H_2\uparrow +2NO\uparrow \rightarrow N_2O\uparrow +H_2O\uparrow$	При увеличении [NO]в 2 раза
6	$H_2\uparrow +2NO\uparrow \rightarrow N_2O\uparrow +H_2O\uparrow$	При увеличении [H ₂] в 2 раза
7	$2HI\uparrow \rightarrow H_2\uparrow + I_2\uparrow$	При расширении смеси в 5 раз
8	$2HI\uparrow \rightarrow H_2\uparrow + I_2\uparrow$	При сжатии смеси в 3 раза
9	$O_2 \uparrow + 2NO \uparrow \rightarrow 2NO_2 \uparrow$	При увеличении [NO]в 4 раза
10	$O_2 \uparrow + 2NO \uparrow \rightarrow 2NO_2 \uparrow$	При сжатии смеси в 3 раза
11	$2NO^{\uparrow} + Cl_2 \rightarrow 2 \ NOCl^{\uparrow}$	При двухкратном разбавлении
_		(P =const)
12	$2NO^{\uparrow} + Cl_2 \rightarrow 2 NOCl^{\uparrow}$	При увеличении объема сосуда в 4
		раза
13	$2NO^{\uparrow} + Cl_2 \rightarrow 2 NOCl^{\uparrow}$	При увеличении [NO]в 3 раза
14	$H_2\uparrow + 2NO\uparrow \rightarrow N_2O\uparrow + H_2O\uparrow$	При сжатии смеси в 4 раза
15	$H_2\uparrow +2NO\uparrow \rightarrow N_2O\uparrow + H_2O\uparrow$	При добавлении шести молей инерт-
		ного газа (V = const)

№	Реакция	Изменение условий эксперимента
п/п		
16	$2HI \uparrow \rightarrow H_2 \uparrow + I_2 \uparrow$	При увеличении [НІ]в 4 раза
17	$2HI \uparrow \rightarrow H_2 \uparrow + I_2 \uparrow$	При уменьшении[HI] в 3 раза
18	$O_2 \uparrow + 2NO \uparrow \rightarrow 2NO_2 \uparrow$	При двухкратном разбавлении
		(P = const)
19	$O_2 \uparrow + 2NO \uparrow \rightarrow 2NO_2 \uparrow$	При уменьшении [NO] в 3 раза
20	$O_2 \uparrow + 2NO \uparrow \rightarrow 2NO_2 \uparrow$	При увеличении [O ₂] в 5 раз

Определите, сколько времени потребуется для достижения степени превращения α в реакции первого порядка $A \rightarrow B + C$, если известна константа скорости реакции. Сколько времени потребуется для достижения той же степени превращения при увеличении температуры на 20° , если температурный коэффициент Вант-Гоффа равен 2

	τ υψφα ρι				
No	α, %	k, мин ⁻¹	No	α, %	k, мин ⁻¹
п/п			п/п		
1	5	0,051	11	55	0,072
2	10	0,052	12	60	0,076
3	15	0,054	13	65	0,081
4	20	0,055	14	70	0,088
5	25	0,057	15	75	0,09 2
6	30	0,059	16	80	0,100
7	35	0,061	17	85	0,112
8	40	0,064	18	90	0,128
9	45	0,066	19	95	0,157
10	50	0,069	20	99	0,230

Тема 8. ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫЕ РЕАКЦИИ (ОВР)

Изучите следующие понятия, определения и сведения: степень окисления, окислитель, восстановитель, окислительно-восстановительная двойственность, стандартный окислительно-

восстановительный потенциал, примеры типичных окислителей и восстановителей, определение направления ОВР.

Вопрос 1

Выделите в указанных веществах атомы элементов, для которых характерны окислительно-восстановительные свойства. Отметьте их степени окисления и функцию, которую они могут выполнять в ОВР: только окислитель, только восстановитель, окислительно-восстановительная двойственность.

Оцените их окислительно-восстановительную активность с использованием электродных потенциалов (приложение, табл. 10).

№	Вещества	№	Вещества
n/n		n/π	
1.	Ce(SO ₄) ₂ , Na	11.	F ₂ , SnCl ₂
2.	AuCl ₃ , Al	12.	H ₂ O ₂ , NH ₃
3.	Ca, K ₂ MnO ₄	13.	O ₂ , FeCl ₂
4.	HIO ₃ , Cu	14.	$KMnO_4$, Na_2SO_3 (pH < 7)
5.	$NaBiO_3$, Na_2SO_3 (pH > 7)	15.	MnO ₂ , Au
6.	PbO ₂ , H ₃ AsO ₄	16.	HI, CrCl ₂
7.	KCl, Cl ₂	17.	SnCl ₄ , La
8.	K ₂ Cr ₂ O ₇ , Ni(OH) ₃	18.	NaClO, HNO ₃
9.	Na ₂ S, MnSO ₄	19.	Cr ₂ (SO ₄) ₃ , Mg
10.	Zn, K ₃ PO ₃	20.	H_2 , $KNO_2(pH < 7)$

Вопрос 2

Допишите окислительно-восстановительную реакцию и расставьте коэффициенты с использованием метода электронного баланса. Запишите ионно-молекулярные уравнения реакций. Укажите окислитель и восстановитель (используйте приложение, табл. 13)

- 1. $H_2O_2 + KI + H_2SO_4 \rightarrow I_2 + ...$
- 2. $KMnO_4 + Na_2SO_3 + KOH \rightarrow K_2MnO_4 + ...$
- 3. $Zn + HNO_3$ (pa36.) $\rightarrow NH_4NO_3 + ...$
- 4. $K_2Cr_2O_7 + H_2S + H_2SO_4 \rightarrow S\downarrow + ...$
- 5. $FeSO_4 + KMnO_4 + H_2SO_4 \rightarrow Fe_2(SO_4)_3 + ...$
- 6. Cu + HNO₃ (конц) \rightarrow NO₂↑ + ...
- 7. $KMnO_4 + Na_2SO_3 + H_2SO_4 \rightarrow MnSO_4 + ...$
- 8. $K_2Cr_2O_7 + H_2O_2 + H_2SO_4 \rightarrow O_2 + ...$

- 9. $Mg + H_2SO_4$ (конц) $\rightarrow H_2S^{\uparrow} + ...$
- 10. KMnO₄ + NaNO₂ + H₂O \rightarrow MnO₂ \downarrow + ...
- 11. $CrCl_3 + H_2O_2 + NaOH \rightarrow Na_2 CrO_4 + ...$
- 12. Ag + HNO₃ (pa₃6) \rightarrow NO[↑] + ...
- 13. KMnO₄ + H₂S + H₂SO₄ \rightarrow S \downarrow + ...
- 14. $K_2Cr_2O_7 + Na_2SO_3 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + ...$
- 15. $KMnO_4 + NaNO_2 + KOH \rightarrow K_2MnO_4 + ...$
- 16. Pb + HNO₃ (pa36) \rightarrow NO[↑] + ...
- 17. NaBr + MnO₂ + H₂SO₄ \rightarrow Br₂ + ...
- 18. $KClO_3 + FeSO_4 + H_2SO_4 \rightarrow KCl + ...$
- 19. $KMnO_4 + H_2O_2 + H_2SO_4 \rightarrow MnSO_4 + ...$
- 20. Cu + HNO₃ (pa₃6) \rightarrow NO[↑] + ...

С использованием стандартных электродных потенциалов (приложение, табл. 10) рассчитайте ЭДС реакции и составьте уравнение возможной окислительно-восстановительной реакции, расставьте коэффициенты.

- 1. Можно ли в качестве окислителя в кислой среде использовать $K_2Cr_2O_7$ для реализации в стандартных условиях следующих процессов: a) $2F 2e \rightarrow F_2$; б) $2Br 2e \rightarrow Br_2$?
- 2. К растворам хлорида и йодида калия, подкисленным серной кислотой, добавили нитрит натрия. Какой из галогенов выделится при этом в свободном виде?
- 3. Действием какого из окислителей ($K_2Cr_2O_7$ или $KMnO_4$) можно выделить хлор в свободном виде из раствора соляной кислоты?
- 4. Можно ли восстановить сульфат железа (III) до сульфата железа (II): а) бромидом калия; б) йодидом калия?
- 5. К растворам фторида и хлорида калия, подкисленным серной кислотой, добавили диоксид свинца PbO₂. Какой из галогенов выделится при этом в чистом виде?
- 6. Можно ли в качестве окислителя в кислой среде использовать бром для следующих процессов: a) Fe^{2+} $e \rightarrow Fe^{3+}$;

6) Mn^{2+} - 5e $\to Mn^{+7}$?

7. Можно ли в качестве окислителя в кислой среде использовать $K_2Cr_2O_7$ для следующих процессов: a) Mn^{2+} - 5e $\rightarrow Mn^{+7}$;

6)
$$N^{+3} - 2e \rightarrow N^{+5}$$
?

8. Можно ли в качестве окислителя в кислой среде использовать H_2O_2 для следующих процессов: a) S^{+4} - $2e \rightarrow S^{+6}$;

6)
$$2F^--2e \rightarrow F_2$$
?

- 9. Какой из окислителей (MnO $_2$ или PbO $_2$) эффективнее использовать в кислой среде для получения Cl $_2$ из раствора соляной кислоты?
- 10. Для получения какого галогена можно использовать NaNO₂ в качестве окислителя в кислой среде: a) $2Cl^{-}$ $2e \rightarrow Cl_{2}$;

6)
$$2I - 2e \rightarrow I_2$$
?

11. Можно ли в качестве восстановителя использовать раствор HCl в следующих процессах: a) $Fe^{3+} + e \rightarrow Fe^{2+}$;

6)
$$Mn^{+7} + 5e \rightarrow Mn^{2+}$$
?

- 12. Действие какого из окислителей (Br_2 или $KMnO_4$) эффективней в кислой среде для процесса Sn^{2+} $2e \rightarrow Sn^{4+}$?
- 13. Какой процесс можно использовать для окисления сульфата железа (II) до сульфата железа (III) в кислой среде:

a)
$$S^{+6} + 2e \rightarrow S^{+4}$$
;
6) $Mn^{+7} + 5e \rightarrow Mn^{2+}$?

- 14. Действие какого окислителя ($K_2Cr_2O_7$ или I_2) эффективнее использовать в кислой среде для процесса N^{+3} $2e \rightarrow N^{+5}$?
- 15. Можно ли в качестве восстановителя в кислой среде использовать H_2O_2 для следующих процессов: a) Mn^{+7} + 5e \rightarrow Mn^{2+}

6)
$$S^{+6} + 2e \rightarrow S^{+4}$$
?

- 16. К растворам хлорида и йодида калия, подкисленным серной кислотой, добавили $K_2Cr_2O_7$. Какой галоген выделяется при этом в свободном виде?
- 17. Какой процесс можно использовать для окисления нитрита натрия до нитрата в кислой среде: a) $Fe^{3+} + e \rightarrow Fe^{2+}$

6)
$$Cr^{+6} + 3e \rightarrow Cr^{3+}$$
?

18. Можно ли в качестве окислителя в кислой среде использовать $KMnO_4$ в следующих процессах : a) $2F^- - 2e \rightarrow F_2$; б) $S^{2^-} - 2e \rightarrow S$?

19. Можно ли в качестве окислителя в кислой среде использовать $K_2Cr_2O_7$ для следующих процессов: a) S^{2^-} - $2e \rightarrow S$

6)
$$2F^{-}$$
 - $2e \rightarrow F_{2}$?

20. Какая из следующих реакций осуществима в стандартных условиях: a) $Zn + AgNO_3 \rightarrow ...$; б) $Cu + FeSO_4 \rightarrow ...$?

Тема 9. КОЛЛОИДНЫЕ СИСТЕМЫ

Изучите следующие понятия и определения: дисперсные системы, дисперсная фаза, дисперсионная среда, коллоидные системы, золь, гель, адсорбция, правило Пескова-Фаянса, кинетическая и агрегативная устойчивость, коагуляция, седиментация, пороговая концентрация.

Вопрос 1 Напишите уравнения реакций, протекающих при образовании золей, и схемы строения мицелл. В избытке взят компонент, который

N₂	Реагенты	No	Реагенты
п/п		п/п	
1	$AgNO_3 + KBr \rightarrow$	11	$Na_2CO_3 + LaCl_3 \rightarrow$
2	NaI + AgNO ₃ →	12	AlCl ₃ + NaOH →
3	KBr + AgNO ₃ →	13	$FeCl_3 + K_4[Fe(CN)_6] \rightarrow$
4	AgNO ₃ + NaI →	14	$KI + Pb(NO_3)_2 \rightarrow$
5	Na ₂ S + AsCl ₃ →	15	$K_4[Fe(CN)_6] + FeCl_3 \rightarrow$
6	$CuSO_4 + K_4[Fe(CN)_6] \rightarrow$	16	$Pb(NO_3)_2 + KI \rightarrow$
7	AsCl ₃ + Na ₂ S →	17	$Cu(NO_3)_2 + NaOH \rightarrow$
8	$K_4[Fe(CN)_6] + CuSO_4 \rightarrow$	18	Na ₂ SiO ₃ + HCl →(pH=7, гель)
9	LaCl ₃ + Na ₂ CO ₃ →	19	NaOH + Cu(NO ₃) ₂ →
10	NaOH + FeCl ₃ →	20	HCl + Na ₂ SiO ₃ → (рH<7,3оль)

Вопрос 2

указан первым.

Золь получен при постепенном приливании к водному раствору первой соли (A) объемом V_A и молярной концентрации C_A раствора

нижеследующую таблицу): No Золь Исходные соли Электролиты п/п A \overline{V}_{Λ} V_{R} $C_{\mathbf{R}}$ C_{Λ} В ΜЛ моль/л ΜЛ моль/л ΚĪ 20 Al(NO₃)₃, K₂SO₄ 1 AgI 0.01 AgNO₃ 15 0.012 2 AgI AgNO₃ 70 0.005 ΚĪ 20 0.015 CaCl₂, Na₃PO₄ 3 AgBr KBr 25 0.008 AgNO₃ 0.0096 Na₃O₄, MgCl₂ 18 4 AgNO₃ 18 0.012 KBr 20 0.0095 K₃[Fe(CN)₆], KCl AgBr 5 AgCl AgNO₃ 85 0.005 KCl 15 0.025 K₃PO₄, Ba(NO₃)₂ 6 100 0.005 250 AlCl₃, MgSO₄ AgCl NaCl AgNO₃ 0.001 7 AgNO₃ ΚĪ 20 0.008 18 0.005 Agl K₂SO₄, CuCl₂ 55 25 8 AgNO₃ 0.008 ΚI 0.016 Na₁PO₄, CaCl₂ AgI AlCl₃, Na₃PO₄ 9 18 0.011 AgNO₃ 0.013 AgI KI 14 10 AgNO₃ 0.006 0.016 NaBr CuSO₄ AgI 64 K1 19 23 11 AgBr **KBr** 0.009 AgNO₃ 17 0.01 CaC2, Na2CrO4 12 AgBr AgNO₃ 19 0.013 KBr 21 0.009 MCl₂, Na₃PO₄ 13 AgC1 AgNO₃ 96 0.045 KCl 14 0.027 K₂SO₄, Ca(NO₃)₂ 80 220 14 AgCl NaCl 0.006 AgNO₃ 0.001 KBr, MgSO₄ 15 15 ΚI 0.012 AgNO₃ 25 0.006 KCl, MgSO₄ AgI 16 ZnS Na₂S 50 0.001 ZnCl₂ 0.005 Na₂SO₄, CaCl₂ 40

второй соли (B) объемом V_B и молярной концентрации C_B (смотри

а) используя значения ПР (приложение,	табл.	6),	подтвердите	pac-			
четом условие образования ядра мицеллы;							

ZnCl₂

ZnCl₂

ZnCl₂

ΚI

0.002

0.01

0.005

0.013

K2SO4, Ca(NO3)2

CaCl₂, Na₂SO₄

KBr, MgSO₄

MgSO₄, KI

20

50

60

30

б) определите, какие ионы, в соответствии с правилом Пескова-

Фаянса будут адсорбироваться ядром.

Вопрос 3

ca 2.

17

18 19

20

ZnS

FeS

FeS

AgI

Na₂S

Na₂S

Na₂S

AgNO₃

80

70

90

60

0.001

0.001

0.02

0.008

Составьте формулу мицеллы золя и определите знак заряда частиц. Укажите, какой из приведенных в таблице электролитов является более эффективным коагулянтом. Используйте данные вопро-

Тема 10. КОМПЛЕКСНЫЕ СОЕДИНЕНИЯ

Изучите следующие понятия и определения: донорноакцепторное взаимодействие, комплексообразователь, лиганды, внутренняя и внешняя сферы комплексного соединения, координационное число, типы гибридизации, пространственная геометрия комплексов, диссоциация комплексных соединений в водных растворах, константа нестойкости.

Вопрос 1

Напишите уравнения реакции комплексообразования. Для комплексных соединений, полученных в первой реакции, укажите: а) внутреннюю и внешнюю сферы; центральный атом – комплексообразователь и лиганды; б) определите заряд комплексного иона и степень окисления комплексообразователя.

- 1. $Ni(NO_3)_2 + NH_3 (u36.) \rightarrow ...$ K'I = 4 $[Ni(NH_3)_4] Cl_2 + KCN (u36.) \rightarrow ...$ $K_H ([Ni(NH_3)_4]^{2+}) = 1,1 \cdot 10^{-8}; K_H ([Ni(CN)_4]^{2-}) = 1,0 \cdot 10^{-31};$
- 2. $CuSO_4 + NH_4OH$ (изб) $\rightarrow ...$ KY = 4 $[Cu(NH_3)_4]Cl_2 + NaCN$ (изб.) $\rightarrow ...$ K_H ($[Cu(NH_3)_4]^{2^+}$) = 2,14·10⁻¹³; K_H ($[Cu(CN)_4]^{2^-}$) = 5,0·10⁻²⁸
- 3. $FeCl_2 + KCN (изб.) \rightarrow ...$ KY = 6 $(NH_4)_2Fe(SO_4)_2 + Na_2S (изб.) \rightarrow \PiP(FeS) = 5,0.10^{-18}$
- 4. $AgNO_3 + NH_4OH(u36.) \rightarrow ...$ KY = 2 $[Ag(NH_3)_2]Cl + Na_2S_2O_3 (u36.) \rightarrow$ $K_H ([Ag(NH_3)_2]^+) = 5.9 \cdot 10^{-8}; K_H ([Ag(S_2O_3)_2]^{3^-}) = 3.5 \cdot 10^{-14};$
- 5. $ZnSO_4 + KOH (изб.) \rightarrow ...$ $K^{4} = 4$ $Na_2[Zn(OH)_4] + HNO_3 (изб.) \rightarrow ...$
- 6. $AgNO_3 + Na_2S_2O_3 (u36.) \rightarrow ...$ KY = 2 $Na[Ag(NO_2)_2] + Na_2S_2O_3 (u36.) \rightarrow$ $K_H([Ag(NO_2)_2]) = 1,3\cdot 10^{-3}; K_H([Ag(S_2O_3)_2]^{3-}) = 3,5\cdot 10^{-14};$
- 7. AlCl₃ + NaOH (изб.) \rightarrow ... KY = 4 или 6 NH₄Al(SO₄)₂ +NaOH (мало) \rightarrow ... ПР (Al(OH)₃ = 3,2·10⁻³⁴

```
KY = 6
8.
       Fe(NO<sub>3</sub>)<sub>3</sub> + NaSCN(изб.)\rightarrow...
       K_3[Fe(SCN)_6 + KF (изб.) \rightarrow ...
       K_H([Fe(SCN)_6]^{3-}) = 5.9 \cdot 10^{-4}; K_H([FeF_6]^{3-}) = 7.9 \cdot 10^{-17}
       FeCl<sub>3</sub> + KF (изб) →...
                                                                         KY = 6
9.
       Na_3[FeF_6] + NaCN (изб.) \rightarrow ...
       K_H([FeF_6]^{3^-}) = 7.9 \cdot 10^{-17}; K_H([Fe(CN)_6]^{3^-}) = 1.0 \cdot 10^{-45};
      Fe_2(SO_4)_3 + KCN(изб.) \rightarrow ...
                                                                         KY = 6
10.
       Fe_2(SO_4)_3 + K_4[Fe(CN)_6] \rightarrow ... IIP (Fe_4[Fe(CN)_6]_3 = 3.0 \cdot 10^{-41}
                                                                          КЧ = 4
11.
       AuCl<sub>3</sub> + KCl( изб.) \rightarrow...
       K[AuCl_4] + KSCN (изб.) \rightarrow ...
       K_H([AuCl_4]) = 5.0 \cdot 10^{-22}; K_H(Au(SCN)_4]) = 1.0 \cdot 10^{-42};
12.
       Cd(OH)_2 + NH_4OH (изб.) \rightarrow ...
                                                                         KY = 4
       [Cd(NH_3)_4](OH)_2 + KCN (изб.) \to ...
       K_H([Cd(NH_3)_4]^{2^+}) = 2.8 \cdot 10^{-7}; K_H([Cd(CN)_4]^{2^-}) = 7.8 \cdot 10^{-18};
       Fe(SCN)<sub>2</sub> + KSCN (изб.) \rightarrow...
                                                                         KY = 6
13.
       FeSO<sub>4</sub> + (NH<sub>4</sub>)<sub>2</sub>SO<sub>4</sub> (изб.) \rightarrow...
                                                                двойная соль
                                                                         KY = 6
14.
       Fe(CN)<sub>2</sub> + KCN (изб.) \rightarrow...
       K_4[Fe(CN)_6] + FeCl_3(\mu_36.) \rightarrow ... \quad \PiP(Fe_4[Fe(CN)_6]_3 = 3.0 \cdot 10^{-41}
15.
       CuCl + NH<sub>3</sub> (изб.) \rightarrow...
                                                                        KY = 2
       [Cu(NH_3)_2]Cl + KCN (изб.) \rightarrow ...
       K_{H}([Cu(NH_{3})_{2}]^{+}) = 2.2 \cdot 10^{-8}; K_{H}([Cu(CN)_{2}]^{-}) = 1.0 \cdot 10^{-24};
16.
       Cu(OH)_2 + NaOH (30\%) \rightarrow ...
                                                                        КЧ = 4
       Na_2[Cu(OH)_4] + KCN (изб.) \rightarrow ...
       K_H([Cu(OH)_4]^{2^-}) = 7.6 \cdot 10^{-17}; K_H([Cu(CN)_4]^{2^-}) = 5.0 \cdot 10^{-28};
       AgCl + KCl (изб.) \rightarrow ...
                                                                        KY = 2
17.
       K[AgCl_2] + KSCN ( изб.) \rightarrow ...
      K_H([AgCl_2]^{-}) = 1.8 \cdot 10^{-5}; K_H([Ag(SCN)_2]^{-}) = 2.7 \cdot 10^{-8};
18.
      Ag_2O + NH_4OH (изб.) \rightarrow ...
                                                                       KY = 2
      [Ag(NH_3)_2]OH + HNO_3 (изб.) \rightarrow ...
19. AgNO<sub>3</sub> + Na<sub>2</sub>S<sub>2</sub>O<sub>3</sub> (изб.) \rightarrow...
                                                                       KY = 2
```

 $Na_3[Ag(S_2O_3)_2] + NaCN (изб.) \rightarrow ...$ $K_H([Ag(S_2O_3)_2]^3) = 3.5 \cdot 10^{-14}; \quad K_H([Ag(CN)_2]) = 1.4 \cdot 10^{-20};$ 33

20.
$$AgNO_3 + KSCN (\mu 36.) \rightarrow ...$$
 $K'H = 2$
 $K[Ag(SCN)_2] + K_2S_2O_3 (\mu 36.) \rightarrow ...$
 $K_H([Ag(SCN)_2]^2) = 2.7 \cdot 10^{-8}; K_H([Ag(S_2O_3)_2]^{3-2}) = 3.5 \cdot 10^{-14}$

Используя значения общей константы нестойкости K_H , определите молярную концентрацию ионов комплексообразователя и концентрацию ионов (или молекул) лиганда в растворе комплексной соли (A) с концентрацией C(A), содержащей избыток лигандов в виде вещества (B) с молярной концентрацией C(B).

№ п/п	Раствор комплексного соединения			Раствор вещества В		
	Формула А	<i>C</i> (A), моль/л	Кн	Формула В	<i>C</i> (B), моль/л	
1	K ₄ [Fe(CN) ₆]	0,1	1,0.10-37	KCN	1	
2	K ₃ [Fe(CN) ₆]	0,2	1,3.10-44	KCN	1	
3	[Ag(NH ₃) ₂]C1	0,3	5,7.10-8	NH ₃	1,5	
4	K ₂ [Cd(CN) ₄]	0,05	7,8.10-18	KCN	0,1	
5	K ₂ [HgI ₄]	0,02	1,5.10-31	KI	0,05	
5	K ₂ [HgCl ₄]	0,01	8,5·10 ⁻¹⁶	KC1	1	
7	$Na_3[Ag(S_2O_3)_2]$	0,1	3,5.10-14	Na ₂ S ₂ O ₃	0,08	
3	[Cu(NH ₃) ₄]Cl ₂	0,01	2,1.10-13	NH ₃	0,5	
)	$[Zn(NH_3)_4]SO_4$	0,4	2,0.10-9	NH ₃	1	
10	K[Ag(CN) ₂]	0,01	2,8-10-21	KCN	0,02	
l 1	[Co(NH ₃) ₆]Cl ₃	0,3	6,2·10 ⁻³⁶	NH ₃	0,1	
12	K ₃ [FeF ₆]	0,02	7,9.10-17	KF	0,3	
13	K ₃ [Co(CN) ₆]	0,01	1,0.10-64	KCN	0,5	
4	[Ni(NH ₃) ₆]Cl ₂	0,1	9,8·10-9	NH ₃	0,3	
5	K ₄ [Co(CN) ₆]	0,5	8,1.10-20	KCN	2	
16	K ₃ [Fe(SCN) ₆]	0,1	5,9.10-4	KSCN	1	
7	[Co(NH ₃) ₆]Cl ₂	0,2	4,1.10-5	NH ₃	1,5	
8	$K_2[Zn(CN)_4]$	0,01	2,4.10-20	KCN	0,5	
9	K ₂ [UF ₆]	0,3	1,6.10-25	KF	1 .	
20	K ₄ [Hg(CN) ₆]	0,05	2,4.10-41	KCN	0,1	

Определите тип гибридизации орбиталей комплексообразователя и пространственную конфигурацию комплекса. При ответе можно использовать предлагаемый образец оформления.

Образец оформления

1.	Формула комплекса	A. $[Cu(NH_3)_2]^+$; B. $[Ni(CN)_4]^2$ B. $[Co(SCN)_4]^2$; Γ . $[FeF_6]^3$
2.	Заряд иона комплексо- образователя	A. 1+; Б. 2+; B. 2+; Γ. 3+ 3d 4s 4p 4d
3.	Сокращенная электронная формула невозбужденного атома ком-	A.Cu[] 11 11 11 11 11 11 11 11 11 11 11 11 11
	плексообразователя в виде энергетических	Б. Со[] т + т + т т + 1
	ячеек	3d 4s 4p 4d B. Ni[] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		7. Fe[] 11 11 11 11 11 11 11 11 11 11 11 11 1
4.	Сокращенная электрон- ная формула свободного нона комплексообразо-	
	вателя в виде энергети- ческих ячеек	3d 4s 4p 4d Б.Со ²⁺ [] † 1 † 1 † 1 † 1 † 1 1 1 1 1 1
		3d 4s, 4p 4d B. Ni ²⁺ [] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
		Γ. Fe ³⁺ [] 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

		Окончиние
5	Число неспаренных электронов иона комплексобразователя в окружении лигандов данного типа (пе)	А. 0; Б. 3; В. 0; Г. 5
6	Сокращенная электронная формула комплекса в виде энегетических ячеек (пунктиром выделены орбитали комплексообразователя, занятые электронными парами лигандов)	3d 4s 4p 4d
7	Тип гибридизации	A. sp;
8	Пространственная конфигурация комплекса	А. Линейная. В. Плоский квадрат Б. Тетраэлр. Г. Октаэлр

Таблица исходных данных

No		Число неспа-	Nº		Число неспа-
п/п		ренных элек-	п/п		ренных элек-
	Комплекс	тронов (пе)		Комплекс	тронов (пе)
1	$[Ag(NH_3)_2]^+$	0	11	[Fe(H2O)6]2+	4
2	$[Ag(CN)_2]^-$	0	12	[FeF ₆] ³⁻	5
3	$[Co(H_2O)_6]^{3+}$	0	13	$[Ni(NH_3)_6]^{2+}$	2
4	$[Co(H_2O)_6]^{2+}$	3	14	[Pt(CN) ₄] ²	0
5	[AuCl ₄]	0	15	$[Ni(H_2O)_6]^{2+}$	2
6	$[Cr(CN)_6]^{3-}$	3	16	$[Ni(NH_3)_4]^{2+}$	2
7	[CoCl ₄] ²⁻	3	17	$[Zn(NH_3)_4]^{2+}$	0
8	$[Co(NO_2)_6]^{3-}$	0	18	$[Cr(NH_3)_6]^{3+}$	3
9	$[Fe(H_2O)_6]^{3+}$	5	19	[FeF ₆] ⁴	4
10	[Fe(CN) ₆] ³⁻	1	20	[Fe(CN) ₆] ⁴⁻	0

Тема 11. СВОЙСТВА ƒ-ЭЛЕМЕНТОВ

Изучите следующие определения, понятия, сведения: лантаноиды (Ln), актиноиды (An), редкоземельные и трансурановые элементы, радиоактивность, свойства металлов и их гидроксидов с разной степенью окисления, окислительно-восстановительные свойства соединений Ln и An, способность к комплексообразованию и координационные числа.

Вопрос 1

Составьте сокращенные электронные формулы в виде энергетических ячеек для *f*-элементов с порядковыми номерами Z. Укажите основные степени окисления, которые они проявляют в химических соединениях.

No	Z	No	Z	N₂	Z
n/n		n/n		n/n	
1	58, 90	8	65, 97	15	58, 90
2	59, 91	9	66, 98	16	59, 91
3	60, 92	10	67, 99	17	60, 92
4	61, 93	11	68, 100	18	61, 93
5	62, 94	12	69, 101	19	62, 94
6	63, 95	13	70, 102	20	63, 95
7	64, 96	14	71, 103		

Вопрос 2

Напишите формулы средней соли и комплексного соединения лантаноида и актиноида. Укажите, растворимы ли они в воде.

№	Средняя соль	Комплексное соединение				
п/п		Централь- ный атом	Лиганд	КЧ		
1	Карбонат церия (III)	Th ⁴⁺	CO ₃ ²	8		
2	Диуранат аммония	Ce ⁴⁺	$C_2O_4^2$	8		
3	Фторид тория	UO ₂ ²⁺	CO ₃ ²	6		
4	Сульфат диоксоурана	Th ⁴⁺	F	6		
5	Нитрат тория	Ce ⁴⁺	CO ₃ ²	8		
6	Карбонат гадолиния	U ⁴⁺	F	6		
7	Хлорид церия (III)	Th ⁴⁺	$C_2O_4^2$	8		

No	Средняя соль	Комплексио	ое соединени	e
11/11		Централь-	Лиганд	КЧ
		ный атом		
8	Фторид урана (IV)	UO ₂ ²⁺	$C_2O_4^2$	6
9	Фторид диоксоурана(VI)	Ce ⁴⁺	SO ₄ ²	8
10	Оксалат церия (III)	Pu ⁴⁺	$C_2O_4^2$	8
11	Нитрат диоксоурана(VI)	U ⁴⁺	SO ₄ ²	8
12	Фторид урана (VI)	Ce ⁴⁺	CO_3^2	8
13	Ортофосфат тория (IV)	Th ⁴⁺	CO_3^2	8
14	Диуранат аммония	Pu ⁴⁺	CO ₃ ²	8
15	Карбонат оксотория	UO ₂ ²⁺	CO_3^2	6
16	Хлорид диоксоурана	Ce ⁴⁺	$C_2O_4^2$	8
17	Сульфат церия (IV)	Th⁴+	CO_3^2	8
18	Ортосиликат тория (IV)	UO ₂ ²⁺	SO ₄ ²	6
19	Уранат натрия	Pu ⁴⁺	$C_2O_4^2$	8
20	Оксалат неодима	UO ₂ ²	F	6

Допишите уравнения следующих химических реакций:

1.
$$ScCl_3 + KOH (изб.) \rightarrow KY = 6 или 4$$

 $Sc(OH)_3 + HNO_3 (разб.) \rightarrow$
 $ScF_3 + HF (изб.) \rightarrow KY = 6$

2.
$$Sc + NaOH + H_2O \xrightarrow{t}$$
, $KY = 6$ или 4 $ScCl_3 + Na_2CO_3$ (изб.) $\rightarrow KY = 6$ $Sc(OH)_3 \xrightarrow{t}$,

3.YCl₃ + Mg
$$\stackrel{t}{\longrightarrow}$$
.
Y(OH)₃ + H₂SO₄ (pa36.)
Y + H₂O $\stackrel{t}{\longrightarrow}$.

4.
$$LaCl_3 + Ca \xrightarrow{t}$$

 $La + HCl (pas6.) \rightarrow$
 $La(OH)_3 \xrightarrow{t}$

La₂(C₂O₄)₃
t
.
La(OH)₃ + H₂SO₄ (pa₃6.) \rightarrow

5. LaH₃ + H₂O t .

6.
$$CeCl_3 + NaOH \rightarrow$$

 $Ce(OH)_3 + HCl (pas6.) \rightarrow$

$$Ce(OH)_3 + O_2 + H_2O \rightarrow$$

7.
$$CeC_2 + H_2O \xrightarrow{t}$$

 $CeCl_3 + Na_2CO_3 \rightarrow$

$$Ce(NO_3)_3 + NaBiO_3 + HNO_3 \rightarrow Bi(NO_3)_3 + \dots$$

8.
$$Ce(OH)_3 + HCl (pa36.) \rightarrow$$

 $Ce(OH)_4 + HCl (pa36.) \rightarrow$
 $Ce(SO_4)_2 + KI \rightarrow I_2 + ...$

$$Ce(C_2O_4)_2 + (NH_4)_2C_2O_4 \rightarrow KY = 8$$

 $CeC + H_2O \xrightarrow{t}$,

10.
$$Ce(SO_4)_2 + NaOH \rightarrow Ce(SO_4)_2 + HBr \rightarrow$$

11.
$$Ce(OH)_3 + H_2O_2$$
 (мало) \rightarrow $Ce(OH)_4 + H_2O_2$ (изб.) \rightarrow

 $Ce(OH)_4 + H_2SO_4$ (pas6.) \rightarrow

$$Ce(SO_4)_2 + H_2O_2 \rightarrow (pH < 7)$$

12. Th(NO₃)₄ + NaOH
$$\rightarrow$$

Th(OH)₄ + HCl (pas6.)
$$\rightarrow$$

Th(NO₃)₄ + (NH₄)₂C₂O₄ (us6.) \rightarrow KY = 8

13. Th(NO₃)₄ + NaF
$$\rightarrow$$

Th(NO₃)₄ + K₄[Fe(CN)₆] \rightarrow

Th[Fe(CN)₆] + Na₂CO₃ (изб.)
$$\rightarrow$$
 KЧ = 8

14.
$$Th(NO_3)_4 + Na_2CO_3$$
 (мало) + $H_2O \rightarrow ThOCO_3 + ...$
 $ThOCO_3 + Na_2CO_3$ (изб.) + $H_2O \rightarrow KY = 8$
 $Th(C_2O_4)_2 + (NH_4)C_2O_4$ (изб) $\rightarrow KY = 8$

15.
$$U(SO_4)_2 + H_2SO_4 (\mu 36.) \rightarrow KY = 8$$

 $U(SO_4)_2 + K_4[Fe(CN)_6] \rightarrow$
 $UF_6 + H_2 \xrightarrow{t}$

16.
$$U_3O_8 + H_2 \xrightarrow{t}$$

 $UF_4 + Ca \xrightarrow{t}$
 $U(SO_4)_2 + NaOH \rightarrow$

17.
$$UO_2(OH)_2 + H_2SO_4 \text{ (разб.)} \rightarrow UO_2(OH)_2 + NaOH \text{ (изб.)} \rightarrow UCl_6 + H_2O \xrightarrow{\Gamma \text{идролиз}}$$

18.
$$UO_2(NO_3)_2 + K_4[Fe(CN)_6] \rightarrow$$

 $(UO_2)_2[Fe(CN)_6] + NaOH (изб.) \rightarrow$
 $UO_2SO_4 + Na_2CO_3 (изб.) \rightarrow$ $KY = 8$

19.
$$UF_4 + Ca \xrightarrow{t} Ma_2U_2O_7 + Na_2C_2O_4 (изб.) + H_2O \rightarrow KY = 8$$

 $UO_2SO_4 + Zn + H_2SO_4 \rightarrow U(SO_4)_2 + ...$

20.
$$U_3O_8 + H_2 \xrightarrow{t}$$
,
 $U_3O_8 + MnO_2 + H_2SO_4 \rightarrow UO_2SO_4 + ...$
 $Na_2U_2O_7 + Na_2CO_3 (\mu 36.) + H_2O \rightarrow KY = 8$

Тема 12. СТРОЕНИЕ ВЕЩЕСТВА. ГРУППОВЫЕ И ИНДИВИДУАЛЬНЫЕ СВОЙСТВА ЭЛЕМЕНТОВ

Изучите следующие определения, понятия и сведения: химическая идентификация вещества, качественный анализ, аналитический сигнал, аналитические группы ионов, групповой реактив, реакции обнаружения или открытия ионов.

Составьте сокращенные электронные формулы в виде энергетических ячеек для химических элементов с порядковыми номерами Z. Определите тип элементов. Определите высшие степени окисления элементов.

№ п/п	Z	№ п/п	Z	№ n/n	Z	№ п/п	z
1	21, 58	6	92, 27	11	90, 28	16	34, 94
2	33, 90	7	40, 60	12	57, 92	17	82, 68
3	63, 22	8	29, 91	13	35, 66	18	64, 48
4	26, 59	9	25, 61	14	24, 70	19	69, 41
5	72, 64	10	79, 65	15	67, 42	20	49, 92

Вопрос 2

Составьте структурные формулы соединений, укажите степени окисления атомов и типы химических связей между ними (с использованием значений электроотрицательности — приложение, табл. 4). Сравните любые две связи по степени их ионности.

№ π/π	соединения	№ п/п	соедине- ния	№ 11/11	соедине-	№ п/п	соединения
1	La ₂ (C ₂ O ₄) ₃ Na ₂ O ₂	6	BaO ₂ Na ₂ CrO ₄	11	Pb ₃ O ₄ H ₂ CO ₃	16	Na ₂ U ₂ O ₇ CH ₃ COOH
2	H ₂ O ₂ CH ₃ COOH	7	H ₂ C ₂ O ₄ Cr(OH) ₃	12	Na ₂ CrO ₄ EuC ₂	17	(CuOH) ₂ CO ₃ CeC ₂
3	K ₂ Cr ₂ O ₇ U(OH) ₄	8	ThOCO ₃ H ₂ Cr ₂ O ₇	13	Fe ₃ O ₄	18	CaC ₂ Al(OH) ₃
4	H ₂ CO ₃ Pb ₃ O ₄	9	U ₃ O ₈ Th(SO ₄) ₂	14	NaHCO ₃ EuC ₂	19	CrOHSO ₄ Ce ₂ (C ₂ O ₄) ₃
5	KMnO ₄ Fe ₃ O ₄	10	FeOHSO ₄ CeC ₂	15	Th(OH) ₄ Na ₂ U ₂ O ₇	20	NaAlO ₂ BaO ₂

Составьте молекулярные и ионно-молекулярные уравнения химических реакций (или схемы) обнаружения в водном растворе данных ионов. Укажите аналитический сигнал.

- 1. H^+ , CO_3^{2-} , Cu^{2+} ;
- 3. Th⁴⁺, Ca²⁺, Pb²⁺;
- 5. Ce⁴⁺, OH⁻, Fe³⁺;
- 7. UO_{2}^{2+} , H^{+} , Na^{+} ;
- 9. Ni²⁺, Ba²⁺, SO₄²⁻; 11. NO₁, Ca²⁺, K⁺;
- 13. OH, Cl, Cu²⁺;
- 15. Th⁴⁺ SO₄²⁻, Na⁺;
- 17. UO_{3}^{2+} , NO_{3}^{-} , Ca^{2+} ;
- 19. Ce⁴⁺, Ba²⁺, Cl⁻;

- 2. SO_4^{2-} , Pb^{2+} , H^+ ;
- 4. I, Fe³⁺, NO₃;
- 6. Ag⁺, K⁺, NH₄⁺;
- 8. OH, Na, UO₂;
- 10. Ni²⁺, Ca²⁺, SO₄²⁻; 12. CO₂²⁻, Th⁴⁺, Ba²⁺;
 - 14. Pb^{2+} , NO_{3}^{-} , Fe^{3+} ;
- 16. NH₄⁺, Cu²⁺, H⁺;
- 18. Ag⁺, OH⁻, SO₄²⁻;
- 20. UO_{2}^{2+} , CO_{3}^{2-} , Cl_{3}^{2-}

Тема 13. ЭНЕРГЕТИКА ХИМИЧЕСКИХ ПРОЦЕССОВ (варианты домашнего задания)

Вопрос 1

Термохимические расчеты на основе закона Гесса.

С использованием приведенных уравнений реакций и их тепловых эффектов ($\Delta H^{\rm o}$), рассчитайте стандартные теплоты образования (энтальпии образования $\Delta H^{\rm o}_{\rm ofp}$, кДж/моль) указанных веществ.

1. MgSO₄·6H₂O (тв)

$$Mg(TB) + 2H^{+}(p-p) = Mg^{2+}(p-p) + H_{2}(r)$$

$$\Delta H^{0} = -461,8$$

$$H_2$$
 (r) + S (ромб.) + $2O_2$ (r) = $2H^+$ (p-p) + SO_4^{2-} (p-p)

 $MgSO_4 \cdot 6H_2O(TB) = Mg^{2+}(p-p) + SO_4^{2-}(p-p) + 6H_2O(x)$

$$\Delta H^{0} = -909,3$$
$$\Delta H^{0} = +3.5$$

$$H_2(\Gamma) + 0.5O_2(\Gamma) = H_2O(x)$$

$$\Delta H^{0} = -285.8$$

2. Na₂SO₄·10H₂O (TB) $\Delta H^{0} = -480.6$ $2Na(TB) + 2H^{+}(p-p) = 2Na^{+}(p-p) + H_{2}(r)$ $H_2(\Gamma) + S(pom6.) + 2O_2 = 2H^+(p-p) + SO_4^{2-}(p-p)$ $\Delta H^0 = -909.3$ $Na_2SO_4\cdot 10H_2O$ (TB) = $2Na^+$ (p-p) + SO_4^{2-} (p-p) + $10H_2O(x)$ $\Delta H^0 = +76.6$ $H_2(\Gamma) + 0.5O_2(\Gamma) = H_2O(\kappa)$ $\Delta H^{\circ} = -285$. 3. Mn(NO₃)₂·6H₂O(тв) $Mn(TB) + 2H^{+}(p-p) = Mn^{2+}(p-p) + H_{2}(r)$ $\Delta H^{\rm o} = -227.7$ $H_2(r) + N_2(r) + 3O_2(r) = 2H^+(p-p) + 2NO_3^-(p-p)$ $\Delta H^{0} = -409.4$ $Mn(NO_3)_2 \cdot 6H_2O(TB) = Mn^{2+}(p-p) + 2NO_3^{-}(p-p) + 6H_2O(x)$ $\Delta H^{0} = -21.3$ $\Delta H^0 = -285.8$ $H_2(\Gamma) + 0.5O_2(\Gamma) = H_2O(\kappa)$ 4.CuCl₂(TB) $\Delta H^0 = -56.9$ $CuO(TB) + 2HCl(p-p) = CuCl_2(p-p) + H_2O(x)$ $\Delta H^{0} = -61.4$ $CuCl_2(TB) \rightarrow CuCl_2(p-p)$ $\Delta H^{\rm o} = -162.0$ $Cu(TB) + 0.5O_2(r) = CuO(TB)$ $\Delta H^{0} = -334.2$ $H_2(\Gamma) + Cl_2(\Gamma) = 2HCl(p-p)$ $\Delta H^{0} = -285.8$ $H_2(\Gamma) + 0.5O_2(\Gamma) = H_2O(\pi)$ 5. Al₂Cl₆ (TB) $\Delta H^{0} = -1003,2$ $2Al(TB) + 6HCl(p-p) = Al_2Cl_6(p-p) + 3H_2(r)$ $\Delta H^{0} = -184.1$ $H_2(\Gamma) + Cl_2(\Gamma) = 2HCl(\Gamma)$ $HCl(r) \rightarrow HCl(p-p)$ $\Delta H^0 = -72.4$ $\Delta H^{0} = -643.1$ Al_2Cl_6 (TB) $\rightarrow Al_2Cl_6$ (p-p)) 6. As₂O₃(TB) $\Delta H^{0} = +31.6$ $As_2O_3(TB) + 3H_2O(x) = 2H_3AsO_3(p-p)$ $As(TB) + 1.5Cl_2(\Gamma) = AsCl_3(\Gamma)$ $\Delta H^{0} = -298.7$ $AsCl_3(r) + 3H_2O(x) = H_3AsO_3(p-p) + 3HCl(p-p)$ $\Delta H^0 = -73.6$ $\Delta H^{0} = -92.3$ $1/2H_2(r) + 1/2Cl_2(r) = HCl(r)$ $HCl(r) \rightarrow HCl(p-p)$ $\Delta H^{\circ} = -72.5$ $H_2(\Gamma) + 0.5O_2(\Gamma) = H_2O(\kappa)$ $\Delta H^{0} = -285.8$ 7. CaHPO₄·2H₂O (TB) $Ca(TB) + 2H^{+}(p-p) = Ca^{2+}(p-p) + H_{2}(r)$ $\Delta H^{0} = -542.7$ $1,5H_2(\Gamma) + P(бел.) + 2O_2(\Gamma) = 2H^+(p-p) + HPO_4^{2-}(p-p)$ $\Delta H^{0} = -1292.1$

 $\Delta H^{0} = -9.0$

 $\Delta H^{0} = -285.8$

 $CaHPO_4 \cdot 2H_2O(TB) = Ca^{2+}(p-p) + HPO_4^{2-}(p-p) + 2H_2O(\pi)$

 $H_2(\Gamma) + 0.5O_2(\Gamma) = H_2O(xc)$

8. $Ca(H_2PO_4)_2 \cdot H_2O$ (TB) $Ca(TB) + 2H^{+}(p-p) = Ca^{2+}(p-p) + H_{2}(\Gamma)$ $\Delta H^{\circ} = -542.7$ $1,5H_2(\Gamma) + P(бел.) + 2O_2(\Gamma) = H^+(p-p) + H_2PO_4^-(p-p)$ $\Delta H^{0} = -1296.3$ $Ca(H_2PO_4)_2 \cdot H_2O(TB) = Ca^{2+}(p-p) + 2H_2PO_4^-(p-p) + H_2O(TB)$ $\Delta H^{\circ} = -12.8$ $H_2(\Gamma) + 0.5O_2(\Gamma) = H_2O(x)$ $\Delta H^{0} = -285.8$ 9. Na₂CO₃·10H₂O (TB) $2Na(TB) + 2H^{+}(p-p) = 2Na^{+}(p-p) + H_{2}(r)$ $\Delta H^{\circ} = -480.6$ $H_2(r) + C(rpaфиr) + 1,5O_2(r) = 2H^+(p-p) + CO_3^{2-}(p-p)$ $\Delta H^{\circ} = -676.6$ $Na_2CO_3 \cdot 10H_2O$ (TB) = $2Na^+(p-p) + CO_3^{2-}(p-p) + 10H_2O(x)$ $\Delta H^0 = +61.5$ $H_2(r) + 0.5O_2(r) = H_2O(x)$ $\Delta H^{\rm o} = -285.8$ 10. KAI(SO₄)₂ (TB) $2K(TB) + 2H^{+}(p-p) = 2K^{+}(p-p) + H_{2}(\Gamma)$ $\Delta H^{\circ} = -504.3$ $2Al(TB) + 6H^{+}(p-p) = 2Al^{3+}(p-p) + 3H_{2}(r)$ $\Delta H^{\circ} = -1059,4$ $H_2(r) + S(pom6.) + 2O_2(r) = 2H^{+}(p-p) + SO_4^{2-}(p-p)$ $\Delta H^{\rm o} = -909.3$ $KAl(SO_4)_2(TB) = K^+(p-p) + Al^{3+}(p-p) + 2SO_4^{2-}(p-p)$ $\Delta H^{0} = +135.5$

KAl(SO₄)₂(TB) = K⁺(p-p) + Al³⁺(p-p) + 2 SO₄²⁻(p-p) $\Delta H^0 = +135,5$ 11. HI(r) H₂(r) + Cl₂(r) = 2HCl(r) $\Delta H^0 = -184,1$ HCl(r) = HCl (p-p) $\Delta H^0 = -72,5$

HCl(r) = HCl (p-p) $\Delta H^0 = -72.5$ HI(r) = HI (p-p) $\Delta H^0 = -80.4$ $KOH(p-p) + HCl(p-p) = KCl(p-p) + H_2O(x)$ $\Delta H^0 = -55.8$ $KOH(p-p) + HI(p-p) = KI(p-p) + H_2O(x)$ $\Delta H^0 = -55.8$ $Cl_2(r) + 2KI(p-p) = 2KCl(p-p) + I_2(r)$ $\Delta H^0 = -219.3$

12. $CdCl_2(TB)$ $CdO(TB) + 2H^{+}(p-p) = Cd^{2+}(p-p) + H_2O(x)$

CdCl₂(TB) = Cd²⁺(p-p) + 2Cl⁻ (p-p) $\Delta H^0 = -18.7$ Cd(TB) + 0.5O₂(r) = CdO(TB) $\Delta H^0 = -259.0$ H₂(r) + Cl₂(r) = 2H⁺(p-p) + 2Cl⁻(p-p) $\Delta H^0 = -334.2$

 $\Delta H^{0} = -102,1$

 $H_2(r) + Cl_2(r) = 2H^{\dagger}(p-p) + 2Cl^{\dagger}(p-p)$ $\Delta H^0 = -334,2$ $H_2(r) + 0,5O_2(r) = H_2O(x)$ $\Delta H^0 = -285,8$

13. CaCl₂ (TB)

$$CaO(TB) + 2H^{+}(p-p) = Ca^{2+}(p-p) + H_2O(x)$$
 $\Delta H^{0} = -193,4$
 $CaCl_2(TB) = Ca^{2+}(p-p) + 2Cl^{-}(p-p)$
 $\Delta H^{0} = -81,0$
 $Ca(TB) + 0,5O_2(r) = CaO(TB)$
 $\Delta H^{0} = -635,1$
 $H_2(r) + Cl_2(r) = 2H^{+}(p-p) + 2Cl^{-}(p-p)$
 $\Delta H^{0} = -334,2$
 $H_2(r) + 0,5O_2(r) = H_2O(x)$
 $\Delta H^{0} = -285,8$

С использованием приведенных уравнений реакций и их тепловых эффектов (ΔH°) рассчитайте среднее значение энергии связи E, кДж/моль в указанных молекулах.

14. NH₃ (Γ)

2 NH₃ (r) + 1,5O₂ (r) = N₂ (r) + 3H₂O (r)
$$\Delta H^0 = -633,6$$

3H₂O(r) = 1,5O₂(r) + 3H₂(r) $\Delta H^0 = +725,4$
N₂(r) = 2N(r) $\Delta H^0 = +941,4$
3H₂(r) = 6H(r) $\Delta H^0 = +1307,9$

15. CH₄(Γ)

$$C(\text{графит}) + 2H_2 \quad (r) = CH_4(r)$$
 $\Delta H^0 = -74.9$ $C(\text{графит}) = C(r)$ $\Delta H^0 = +715.0$ $\Delta H^0 = +436.0$

16. **HCl (г)**

$$H_2(r) = 2H(r)$$
 $\Delta H^0 = +436.0$ $Cl_2(r) = 2Cl(r)$ $\Delta H^0 = +242.7$ $1/2H_2(r) + 1/2Cl_2(r) = HCl(r)$ $\Delta H^0 = -92.3$

17. Рассчитайте стандартные тепловые эффекты реакций: $C(\Gamma pa \phi u r) + 0.5O_2(\Gamma) = CO(\Gamma)$ $\Delta H^0 = ?$

$$C(графит) + 2H_2O(r) = CO_2(r) + 2H_2(r)$$
 $\Delta H^0 = ?$ $C(графит) + H_2O(r) = CO(r) + H_2(r)$ $\Delta H^0 = ?$ $2CO(r) = CO_2(r) + C(графит)$ $\Delta H^0 = ?$ по следующим данным

$$C(\text{графит}) + O_2(\text{г}) = CO_2(\text{г})$$
 $\Delta H^\circ = -405,8$ $CO(\text{г}) + 0,5O_2(\text{г}) = CO_2(\text{г})$ $\Delta H^\circ = -284,5$ $H_2(\text{г}) + 0,5O_2(\text{г}) = H_2O(\text{г})$ $\Delta H^\circ = -246,8$

18. Определите количество теплоты, выделяющейся при гашении

 $Ca(TB) + 0.5 O_2(\Gamma) = CaO(TB) + 636.9$ кДж $Ca(TB) + O_2(\Gamma) + H_2(\Gamma) = Ca(OH)_2(TB) + 988.0$ кДж $H_2(\Gamma) + 0.5 O_2(\Gamma) = H_2O(ж) + 285.8$ кДж

 Определите количество теплоты, выделяющейся при взаимодействии 30 кг пентаоксида фосфора с водой по реакции P₂O₅(тв) + H₂O(ж) = 2HPO₃ (p-p) + Q,

по следующим данным:

$$2P(6e\pi.) + 2,5O_2(\Gamma) = P_2O_5(TB) + 1507,2 \text{ кДж}$$
 $H_2(\Gamma) + 0,5 \text{ O}_2(\Gamma) = H_2O(\text{ж}) + 285,8 \text{ кДж}$
 $2P(6e\pi) + H_2(\Gamma) + 3O_2(\Gamma) = 2HPO_3(p-p) + 1912,3 \text{ кДж}$

20. Рассчитайте расход теплоты на получение 100 л водорода в нормальных условиях при конверсии метана по реакции $CH_4(\Gamma) + CO_2(\Gamma) = 2CO(\Gamma) + 2H_2(\Gamma) \pm Q$

по следующим данным:

$$C(графит) + O_2(г) = CO_2(г) + 393,5 кДж$$

 $C(графит) + 2H_2 = CH_4(г) + 74,9 кДж$
 $C(графит) + 0,5 O_2(г) = CO(г) + 110,5 кДж$

Вопрос 2

Расчет теплового эффекта реакций с использованием табличных значений $\Delta H_{\text{oбp}}^{\text{o}}$ молекул и ионов в водных растворах (приложение табл. 5)

Допишите окислительно-восстановительную реакцию (OBP), протекающую в водном растворе, расставьте кэффициенты с применением электронного баланса и рассчитайте тепловой эффект:

- 21. $KMnO_4 + K_2SO_3 + H_2SO_4 \rightarrow MnSO_4 + ...$
- 22. $KMnO_4 + K_2SO_3 + H_2O \rightarrow MnO_2 \downarrow + ...$
- 23. $U_3O_8 + MnO_2 + H_2SO_4 \rightarrow UO_2SO_4 + ...$
- 24. $UCl_4 + O_2 + H_2O \rightarrow UO_2Cl_2 + ...$
- 25. $NaNO_2 + K_2Cr_2O_7 + H_2SO_4 \rightarrow Cr_2(SO_4)_3 + ...$

- 26. $U(SO_4)_2 + O_2 + H_2O \rightarrow UO_2SO_4 + \dots$
- 27. $KMnO_4 + HCl \rightarrow MnCl_2 + ...$
- 28. $K_2Cr_2O_7 + HI \rightarrow CrI_3 + ...$
- $PbO_2 + NaNO_2 + H_2SO_4 \rightarrow PbSO_4 + ...$ 29.
- 30. $Zn + HNO_3 \rightarrow NH_4NO_3 + ...$
- 31. $KI + KMnO_4 + H_2SO_4 \rightarrow I_2 + ...$
- $H_2O_2 + KMnO_4 + H_2SO_4 \rightarrow MnSO_4 + ...$ 32.
- 33. $FeSO_4 + KClO_3 + H_2 SO_4 \rightarrow KCl + ...$
- 34. $KMnO_4 + KBr + H_2SO_4 \rightarrow Br_2 + ...$
- 35. $K_2Cr_2O_7 + HCl$ (конц) $\rightarrow Cl_2 + ...$
- $MnSO_4 + Br_2 + NaOH \rightarrow MnO_2 \downarrow + ...$ 36.
- $H_2O_2 + K_2Cr_2O_7 + H_2SO_4 \rightarrow O_2 + ...$ 37.
- 38. $KMnO_4 + Zn + H_2SO_4 \rightarrow MnSO_4 + ...$
- $Fe(NO_3)_2 + HNO_3 \rightarrow NO + ...$ 39. $Cu + HNO_3 \rightarrow NO + ...$

40.

Определите направление реакции: а) при стандартной температуре (298 К); б) при нестандартной температуре (t), используя приближенную оценку изменения энергии Гиббса реакций при заданной температуре по уравнению:

$$\Delta G_{\mathsf{T}} = \Delta H_{298}^{\mathsf{o}} - T \Delta S_{298}^{\mathsf{o}}.$$

№	Реакция	t, °C
п/п		
41	$Ag_2O(TB) + 2NO(r) + 1.5O_2(r) = 2 AgNO_3(TB)$	1000
42	$Ag(rB) + NO(r) + O_2(r) = AgNO_3(rB)$	1000
43	$CO_2(r) + PbO(rB) = PbCO_3(rB)$	500
44	$ZnO(TB) + CO_2(r) = \overline{ZnCO_3(TB)}$	500
45	$SO_2(r) + Na_2O(TB) = Na_2SO_3(TB)$	2000
46	$Na_2O(TB) + CO_2(T) = Na_2CO_3(TB)$	2000
47	$CO_2(r) + CaO(rB) = CaCO_3(rB)$	1000
48	$2 \text{ NO}_2(\mathbf{r}) = N_2 O_4(\mathbf{r})$	100
49	$BaO(TB) + CO_2(\Gamma) = BaCO_3(TB)$	1500
50	$2 \text{ NO}(r) + 1,5 \text{ O}_2(r) + \text{CaO}(r_B) = \text{Ca}(\text{NO}_3)_2 (r_B)$	1000
51	$MgO(TB) + CO_2(\Gamma) = MgCO_3(TB)$	800
52	$CO_2(\Gamma) + MnO(TB) = MnCO_3(TB)$	500

No	Реакция	t,°C
п/п		Ĺ
53	$H_2O(r) + BaO(rB) = Ba(OH)_2(rB)$	1000
54	$2 \text{ NO (r)} + 1,5 \text{ O}_2(r) + \text{BaO(TB)} = \text{Ba(NO}_3)_2(\text{TB)}$	1500
55	$CaO(TB) + H_2O(\Gamma) = Ca(OH)_2(TB)$	1500
56	$2 \text{ Ag (TB)} + 0.5 \text{ O}_2(\Gamma) = \text{Ag}_2\text{O (TB)}$	300
57	$NO(r) + 0.5 Cl_2(r) = NOCl(r)$	800
58	$ZnO(TB) + SO_3(\Gamma) = ZnSO_4(TB)$	1500
59	$NO(r) + 0.5 O_2(r) = NO_2(r)$	800
60	$H_2O(r) + ZnO(rB) = Zn(OH)_2(rB)$	1000

Оценка температуры разложения веществ с использованием табличных значений $\Delta H_{\rm ofp,298}^{\rm O}$ и $S_{298}^{\rm O}$ (приложение табл. 5).

Уравняйте реакцию термического разложения вещества и рассчитайте температуру начала раложения вещества $T_{\text{разл}}$, K.

61. CaCO ₃ (тв) →	62. Ba(OH) ₂ (тв) →
63. $Zn(OH)_2$ (TB) \rightarrow	64. $NO_2(\Gamma) \rightarrow O_2(\Gamma) + NO(\Gamma)$
65. $Mg(OH)_2$ (TB) \rightarrow	66. $Ca(OH)_2(TB) \rightarrow$
67. $Pb(OH)_2$ (тв) \rightarrow	68. Ag ₂ O (тв) →
69. BaCO ₃ (тв) →	70. $Na_2CO_3(TB) \rightarrow$
71. $Y(OH)_3$ (TB) \rightarrow	72. AgNO ₃ (тв) \rightarrow Ag(тв) +
73. HgO (тв) →	$74.\text{PbCO}_3 \text{ (тв)} \rightarrow$
75. MgCO ₃ (тв) →	76. $ZnCO_3$ (тв) \rightarrow
77. MnCO ₃ (тв) →	78. Na_2SO_3 (тв) \rightarrow
79. $HNO_3(r) \rightarrow NO(r) +$	80. La(OH) ₃ (тв) \rightarrow

Вопрос 5

Следует ответить на нижеперечисленные вопросы.

- 81. Какую практически важную информацию о химических превращениях дает химическая термодинамика?
- 82. Дайте определение внутренней энергии химической системы. Можно ли определить абсолютное значение внутренней энергии?
- 83. Что такое тепловой эффект химической реакции? Приведите примеры эндотермических и экзотермических реакций.

- 84. В чем различие экспериментальных методов определения изобарных и изохорных тепловых эффектов?
- 85. Приведите уравнение связи ΔH и ΔU . Могут ли быть равными эти термодинамические функции химических систем?
- 86. Каков физический смысл $\Delta H_{\rm ofp}^{\rm o}$ вещества? Какие выводы можно сделать по знаку $\Delta H_{\rm ofp}^{\rm o}$?
- 87. Приведите примеры термодинамического уравнения химической реакции.
- 88. Сформулируйте основные законы термохимии. Какие практические следствия вытекают из этих законов?
- 89. Является ли тепловой эффект реакции критерием возможности самопроизвольного протекания химического превращения?
- 90. Каков физический смысл энтропии и от каких факторов она зависит?
- 91. Что такое термодинамическая вероятность и как она связна с энтропией? С чем связана возможность определения абсолютных значений энтропии?
- 92. По каким данным можно рассчитать изменение энтропии в процессе химической реакции? Для каких систем (изолированных или неизолированных) ΔS является критерием возможности самопроизвольного протекания химического превращения?
- 93. Как оценить знак ΔS реакции, протекающей с участием газообразных веществ, не прибегая к справочным данным?
- 94. К какому результату приводит объединение функции ΔH и ΔS в одно уравнение? В чем заключается практическая ценность уравнения Гиббса?
- 95. Каков физический смысл $\Delta G_{\text{обр}}^{\text{o}}$ вещества?
- 96. Какие выводы можно сделать по знаку $\Delta G_{\text{обр}}^{\text{o}}$ вещества?
- 97. Какой из факторов (энтальпийный или энтропийный) имеет решающее значение для изменения энергии Гиббса при очень высоких и очень низких температурах?
- 98. Какие реакции (экзотермические или эндотермические) наиболее вероятны при низких температурах?

- 99. Дайте определение химического потенциала и поясните его физический смысл.
- 100. Какие выводы можно сделать о направлении реакции по величине и знаку ΔG реакции?

Тема 14. ЗАЧЕТНОЕ ЗАДАНИЕ ПЕРВОГО СЕМЕСТРА

Вопрос 1.

Следует знать нижеперечисленные вопросы.

- 1. Атом, химический элемент, вещество (простое, сложное, раствор, смесь).
- 2. Способы выражения состава раствора. Концентрация (молярная, моляльная, массовая и мольная доли).
- 3. Квантово-механическая модель атома, квантовые числа, типы атомных орбиталей.
- 4. Основные принципы и закономерности заполнения атомных орбиталей электронами (принцип минимума энергии, принцип Паули, правило Хунда, правило Клечковского).
- 5. Зависимость радиусов атомов, энергии ионизации, сродства к электрону и электроотрицательности от положения элемента в ПСЭ. Металлы и неметаллы.
- 6. Химическая связь: природа, основные виды и свойства.
- Валентность, степень окисления атома элемента в химическом соединении. Структурные формулы.
- 8. Типы химических превращений. Уравнения химических реакций в ионно-молекулярной форме.
- 9. Основные законы термохимии (закон Гесса, закон Лавуазье-Лапласа) и следствия из них.
- Стандартная энтальпия образования вещества (сложного, простого, ионов в водном растворе). Тепловой эффект химического превращения и его расчет.
- Стандартная энтропия вещества (простого, сложного, ионов в водном растворе). Расчет изменения энтропии в химической реакции.

- 12. Определение направления химической реакции по термодинамическим функциям состояния. Энергия Гиббса.
- 13. Обратимые реакции. Химическое равновесие. Закон действующих масс в химической термодинамике.
- 14. Смещение химического равновесия. Принцип Ле Шателье
- Диссоциация слабых электролитов. Константа и степень электролитической диссоциации. Расчет рН раствора слабой кислоты или слабого основания.
- 16. Произведение растворимости (ПР). Растворимость вещества и её расчет по ПР.
- 17. Гидролиз. Гидролиз по катиону и аниону (изменение рН среды). Константа и степень гидролиза.
- 18. Химический потенциал, активность, коэффициент активности.
- 19. Образование комплекса, тип гибридизации орбиталей комплексообразователя и пространственная конфигурация комплекса. Типы комплексов.
- 20. Типичные комплексообразователи и лиганды, виды химических связей в комплексных соединениях.
- 21. Константы нестойкости. Расчет концентрации комплексообразователя в растворе комплексной соли. Разрушение комплексов с использованием реакций осаждения.
- 22. Уравнение скорости простой и сложной химической реакции. Порядок и молекулярность реакции.
- 23. Энергия активации. Между какими частицами (веществами) реакции идут с заметной скоростью при стандартных условиях, а какие реакции требуют инициирования?
- 24. Зависимость скорости реакции от температуры (уравнение Аррениуса, правило Вант-Гоффа).

Вопрос 2.

Составьте электронные формулы двух элементов в виде энергетических ячеек. Для второго элемента определите степени окисления в указанных соединениях. Составьте структурные формулы. Для каждой химической связи укажите, к какому из атомов смещена электронная плотность химической связи; выделите ионные и ковалентные неполярные связи.

№ п/п	Элементы	Химические соединения
1	Ni, C	CaC ₂ , CO ₂ , NaHCO ₃
2	Fe, N	N ₂ , NH ₃ , KNO ₃
3	Co, Sn	SnO ₂ , Na ₂ SnO ₃ , SnSO ₄
4	Cr, O	H ₂ O ₂ , OF ₂ , NaOH
5	F, Cu	CuI, Cu(OH) ₂ , (CuOH) ₂ SO ₄
6	Mn, Si	SiH ₄ , SiO ₂ , Na ₂ SiO ₃
7	Ti, Br	Br ₂ , HBrO, KBrO ₃
8	Cd, P	PCl ₃ , P ₂ O ₅ , Ca ₃ (PO ₄) ₂
9	B, Cr	Cr ₂ O ₃ , Na ₂ CrO ₄ , Cr(OH) ₃
10	Sc, S	SO ₂ , Na ₂ S ₂ O ₃ , H ₂ SO ₃
11	Ca, Mn	MnO ₂ , KMnO ₄ , MnSO ₄
12	Ti, Cl	Cl ₂ , RbCl, HClO ₄
13	Sb, Ba	Ba(OH) ₂ , BaO ₂ , Ba ₃ (PO ₄) ₂
14	Br, Fe	Fe ₃ O ₄ , FeCl ₃ , FeSO ₄
15	V, K	K ₂ O ₂ , K ₃ PO ₄ , KOH
16	Zr, Al	Al ₂ (SO ₄) ₃ , AlH ₃ , NaAlO ₂
17	As, H	H ₂ , CaH ₂ , H ₂ O ₂
18	Ag, B	B ₂ O ₃ , H ₃ BO ₃ , Na ₂ B ₄ O ₇
19	Mo, N	N ₂ , NO ₂ , KNO ₂
20	W, I	I ₂ , HI, KIO ₃

Bonpoc 3.

Рассчитайте рН водных растворов кислоты и основания (для слабых многоосновных кислот и многовалентных оснований учитывайте только первую ступень диссоциации). Константы диссоциации слабого электролита возьмите из приложения, табл. 7.

No	Кислота,	C,	№	Кислота,	С, моль/л
п/п	основание	моль/л	п/п	основание	
1	H ₂ SO ₄	0,2	11	HCN	0,02
	NH ₄ OH	0,2		Ca(OH) ₂	0,02
2	CH₃COOH	1,0	12	H ₂ CO ₃	0,05
	NaOH	1,0]]	LiOH	0,05
3	HC1	0,05	13	CH₃COOH	0,5
	C ₆ H ₅ NH ₃ OH	0,5		Sr(OH) ₂	0,5
4	H ₂ S	0,5	14	HClO ₄	0,3
	КОН	0,5	<u>. </u>	NH4OH	0,3

Nº	Кислота,	C,	No	Кислота,	С, моль/л
п/п	основание	моль/л	п/п	основание	
5	HNO ₃	0,08	15	HNO ₂	0,4
	NH₄OH	0,08	II	NaOH	0,4
6	H ₂ SO ₃	0,5	16	H ₂ SO ₄	0,01
	RbOH	0,5		C ₆ H ₅ NH ₃ OH	0,01
7	HBr	0,2	17	HClO	0,5
	(CH ₃) ₂ NH ₂ OH	0,2		КОН	0,5
8	H ₃ PO ₄	0,1	18	HC1	0,05
	Ba(OH) ₂	0,1		(CH ₃) ₂ NH ₂ OH	0,05
9	HClO ₄	0,01	19	HF	0,2
	C ₆ H ₅ NH ₃ OH	0,02		RbOH	0,2
10	H ₃ BO ₃	0,1	20	H ₂ SO ₃	0,01
	CsOH	0,1	11	NH₄OH	0,25

Вопрос 4.

Напишите выражения констант равновесия для следующих обратимых процессов. С использованием значений $\Delta G_{\rm ofp}^{\rm o}$ веществ рассчитайте константу равновесия первой реакции и укажите, какие вещества (исходные или продукты) преобладают в системе при равновесии.

- 1. $CaCO_3$ (TB) $\rightleftarrows Ca^{2+}$ (p-p) + CO_3^{2-} (p-p) 2H₂ (r) + O₂(r) $\rightleftarrows 2H_2O$ (r)
- 2. $2NaOH (p-p) + H_2SO_4 (p-p) \stackrel{\rightarrow}{\leftarrow} Na_2SO_4 (p-p) + 2H_2O (ж)$ $ZnSO_3(TB) \stackrel{\rightarrow}{\leftarrow} ZnO(TB) + SO_2 (\Gamma)$
- 3. $N_2(r) + 3H_2(r) \stackrel{?}{\leftarrow} 2NH_3(r)$

$$La_2(CO_3)_3$$
 (TB) $\stackrel{?}{\leftarrow} 2La^{3+}(p-p) + 3CO_3^{2-}(p-p)$

- 4. $Pb(NO_3)_2 (p-p) + 2KI(p-p) \stackrel{\rightarrow}{\leftarrow} PbI_2 (TB) + 2KNO_3 (p-p)$ $ZnO(TB) + H_2 (\Gamma) \stackrel{\rightarrow}{\leftarrow} Zn(TB) + H_2O(\Gamma)$
- 5. $CaO(TB) + CO_2(\Gamma) \stackrel{\rightarrow}{\leftarrow} CaCO_3(TB)$ $CH_4(\Gamma) + H_2O(\Gamma) \stackrel{\rightarrow}{\leftarrow} CO(\Gamma) + 3H_2(\Gamma)$
- 6. $2SO_2(r) + O_2(r) \stackrel{\rightarrow}{\leftarrow} 2SO_3(r)$

$$Ag_2SO_4$$
 (TB) $\stackrel{\rightarrow}{\leftarrow} 2Ag^+(p-p) + SO_4^{2-}(p-p)$

- ZnCO₃ (тв) ≠ ZnO(тв) + CO₂(r)
 2CuSO₄(p-p) + 2H₂O(ж) ≠ (CuOH)₂SO₄ (p-p) + H₂SO₄(p-p)
 AgCl(тв) ≠ Ag⁺(p-p) + Cl⁻(p-p)
- $CdSO_4(p-p) + Na_2S(p-p) \stackrel{>}{\sim} CdS (TB) + Na_2SO_4(p-p)$ 9. $Zn(OH)_2(TB) \stackrel{>}{\sim} Zn^{2+}(p-p) + 2OH^{-}(p-p)$
- $6\text{CO}_2(r) + 6\text{H}_2\text{O} \ (\text{ж}) \rightleftharpoons C_6\text{H}_{12}\text{O}_6 \ (\text{тв}) + 6\text{O}_2 \ (r)$ 10. $4\text{Ag}^+(p-p) + 6\text{Br}^-(p-p) \rightleftharpoons 4\text{AgBr}(p-p)$
- $AlCl_3(p-p) + H_2O(\mathfrak{m}) \rightleftarrows AlOHCl_2(p-p) + HCl(p-p)$
- 11. $SnO_2(TB) + 2CO(r) \neq Sn(TB) + 2CO_2(r)$
- $Na_2SiO_3(p-p) + H_2O(\pi) \stackrel{?}{\leftarrow} NaHSiO_3(p-p) + NaOH(p-p)$ 12. $BaCO_3(TB) \stackrel{?}{\leftarrow} BaO(TB) + CO_2(\Gamma)$
- $2CO(r) + O_2(r) \not\supseteq 2CO_2(r)$ 13. $S(TB) + 2H_2O(x) \not\supseteq SO_2(r) + 2H_2(r)$
- PbBr₂(TB) + 2KI(p-p) \rightarrow PbI₂(TB) + 2KBr(p-p)
- 14. $C_2H_5OH(\pi) \neq C_2H_4(r) + H_2O(r)$ $2N_2(r) + 6H_2O(r) \neq 4NH_3(r) + 3O_2(r)$
- 15. $4\text{CO}(r) + 2\text{SO}_2(r) \gtrsim 2\text{S}(\text{TB}) + 4\text{CO}_2(r)$
- $H_2PO_4^-$ (p-p) $\rightleftarrows HPO_4^{2-}$ (p-p) + H^+ (p-p) 16. $4NH_3(r) + 3O_2(r) <math>\rightleftarrows 2N_2(r) + 6H_2O(r)$
- 16. $4NH_3(r) + 3O_2(r) \stackrel{?}{\rightleftharpoons} 2N_2(r) + 6H_2O(r)$ $3AgNO_3(p-p) + Na_3PO_4(p-p) \stackrel{?}{\rightleftharpoons} 3NaNO_3(p-p) + Ag_3PO_4(TB)$
- 17. $CH_4(r) + 2O_2(r) \neq CO_2(r) + 2H_2O(r)$ $2NaOH(p-p) + CuSO_4(p-p) \neq Cu(OH)_2(rB) + Na_2SO_4(p-p)$
- $Mg(OH)_2(TB) \stackrel{?}{\sim} MgO(TB) + H_2O(\Gamma)$ 19. $2NO(\Gamma) + O_2(\Gamma) \stackrel{?}{\sim} 2NO_2(\Gamma)$

18. $4NO(r) + 6H_2O(r) \neq 4NH_3(r) + 5O_2(r)$

- 19. $2NO(r) + O_2(r)
 eq 2NO_2(r)$ $CO_2(r) + 3H_2(r)
 eq CH_3OH(r) + H_2O(r)$
- 20. $2SO_2(r) + O_2(r) \not\subset 2SO_3(r)$ $BaCl_2(p-p) + H_2SO_4(p-p) \not\subset BaSO_4(rB) + 2HCl(p-p)$

Вопрос 5.

При взаимодействии растворов двух веществ A и В протекает стехиометрическая реакция с образованием вещества D. Плотность раствора A принять равной 1 г/мл.

Определите молярную концентрацию вещества В.

N₂	A	ω(A),	V(A),	В	V(B),	D
п/п		%	мл		мл	
1	H ₂ SO ₄	0,75	25	Ca(OH) ₂	10	Кислая соль
2	Na ₃ PO ₄	1,1	25	BaCl ₂	15	Средняя соль
3	Ca(OH) ₂	1,1	50	H ₃ PO ₄	100	Дигидроортофс-
						фат кальция
4	Ba(OH) ₂	1,12	25	HNO ₃	25	Средняя соль
5	Ca(OH) ₂	1,2	20	H ₃ PO ₄	10	Основная соль
6	CuCl ₂	2,2	110	Na ₂ CO ₃	10	Основная соль
7	H ₃ PO ₄	0,98	35	NaOH	10	Гидроортофос-
						фат натрия
8	AlCl ₃	1,1	10	КОН	5	Гидроксид
Ì						алюминия
9	FeCl ₃	1,1	20	K ₄ [Fe(CN) ₆	10	Комплексная
1]		соль
10	CuSO ₄	1,2	20	NH₄OH	10	Гидроксид
						меди (II)

Определите объем вещества В.

No	A	ω(A),	V(A),	В	C(B),	D
п/п		%	МЛ		моль/л	
11	FeCl ₃	1,1	10	NaOH	0,1	Гидроксид же- леза (III)
12	Pb(NO ₃) ₂	3,3	10	KI	0,05	Средняя соль
13	Ca(OH) ₂	1,1	50	HCl	0,25	Средняя соль
14	H ₃ PO ₄	1,3	40	Ca(OH) ₂	0,1	Средняя соль
15	КОН	0,84	40	H ₂ SO ₄	0,03	Средняя соль
16	HC1	1,05	25	Ba(OH) ₂	0,3	Средняя соль
17	NaHCO ₃	1,5	25	H ₂ SO ₄	0,16	Средняя соль
18	KOH	1,1	25	H ₃ AsO ₄	0,1	Средняя соль
19	ThCl ₄	0,9	15	Na ₂ CO ₃	0,04	Средняя соль
20	Ba(OH) ₂	1,0	100	H ₃ PO ₄	0.01	Основная соль

Вопрос 6.

Какая из приведенных ниже двух реакций протекает с большей скоростью и почему? Приблизительно оцените величину энергии

активации обеих реакций.

No	Реакции
п/п	
1	a) $N_2 \rightarrow 2N$; 6) $O_2 \rightarrow 2O$
2	a) $Na + H_2O \rightarrow Na^+ + OH^- + 0.5H_2$; 6) $Cl_2 + H_2O \rightarrow H^+ + Cl^- + HClO$
3	a) HF \rightarrow H + F; 6) HI \rightarrow H + I
4	a) $CO_3^{2-} + H^+ \rightarrow HCO_3^-$; 6) $CO_2 + OH^- \rightarrow HCO_3^-$
5	a) $HCl \rightarrow H + Cl$; 6) $H + Cl \rightarrow HCl$
6	a) $2SO_2 + O_2 \rightarrow 2SO_3$; 6) $2Na \cdot + O_2 \rightarrow Na_2O_2$
7	a) $CO \rightarrow C + O$; 6) $NO \rightarrow N + O$
8	a) $H^+ + HS^- \rightarrow H_2S$; 6) $H_2 + S \rightarrow H_2S$
9	a) $SiO \rightarrow Si + O$; 6) $H + OH \rightarrow H_2O$
10	a) KOH+HC1 $\xrightarrow{\text{H}_2\text{O}}$ KC1+ H ₂ O: 6) H ₂ + S \rightarrow H ₂ S
11	a) $H_2 \rightarrow 2H$; 6) $O_2 \rightarrow 2O$
12	a) Na· + H ₂ \rightarrow NaH + H; 6) Na + Cl ₂ \rightarrow NaCl + C1
13	a) $H_2 + 0.5 O_2 \rightarrow H_2O$; 6) $H^+ + OH^- \rightarrow H_2O$
14	a) $H_2 + Cl_2 \rightarrow 2HCl$; 6) $Rb + Cl_2 \rightarrow RbCl + Cl$
15	a) $HO_2^{\cdot} + H_2O \rightarrow H_2O_2 + OH_2^{\cdot}$; 6) $H_1^{\cdot} + H_2^{\cdot} \rightarrow H_2$
16	a) Ba + 2H ₂ O \rightarrow Ba(OH) ₂ + H ₂ ; 6) Ba ²⁺ + SO ₄ ²⁻ \rightarrow BaSO ₄
17	a) $Br^{-} + Ag^{+} \rightarrow AgBr$; 6) $Br^{-} + ClO^{-} \rightarrow BrO^{-} + Cl^{-}$
18	a) $H_2 \rightarrow 2H$; 6) $Cl_2 \rightarrow 2Cl$
19	a) $4\text{Li} + \text{O}_2 \rightarrow 2\text{Li}_2\text{O};$ 6) $Pb^{2+} + 2I \rightarrow PbI_2$
20	a) $Ag^+ + I^- \rightarrow AgI$; 6) $AgNO_3 + KI \xrightarrow{H_2O} AgI + KNO_3$

Тема 15. РАСТВОРЫ. ЭЛЕКТРОХИМИЯ

Вопрос 1

Следует знать нижеперечисленные вопросы.

1. Чем отличаются растворы от смесей и химических соединений?

- Идеальные растворы. Изменение ΔH , ΔG и ΔS при образовании идеальных растворов.
- Реальные растворы. Причины отклонения их свойств от идеальности. Диссоциация и ассоциация. Сольватация и гидратация.
- 3. Теория электролитической диссоциации Аррениуса. Экспериментальные факты, подтверждающие теорию Аррениуса и кажущееся противоречие теории Аррениуса законам физики.
- Сильные и слабые электролиты. Степень и константа диссоциации. Закон разбавления Оствальда.
- 5. Закон Рауля для идеальных растворов. Зависимость давления пара компонентов реальных растворов от состава.
- 6. Кипение и замерзание растворов. Определение молярной массы неэлектролитов.
- 7. Осмос и осмотическое давление. Уравнение Вант-Гоффа.
- 8. Активность неэлектролитов, электролитов, ионов. Коэффициент активности.
- Расчет коэффициентов активности электролитов по уравнению Дебая-Хюккеля. Ионная сила раствора.
- 10. Электрохимические процессы. Гальванический элемент.
- 11. Двойной электрический слой. Электродный потенциал.
- 12. Электроды первого рода. Уравнение Нернста для металлических и газовых электродов.
- Окислительно-восстановительные электроды. Уравнение Нернста. Влияние рН среды на потенциалы окислительновосстановительного электрода.
- Конструкция и электродные процессы водородного и кислородного электродов, зависимость их потенциалов от рН среды.
- Уравнение Нернста для ЭДС гальванического элемента. Обратимый и необратимый гальванический элемент.
- 16. Электролиз. Законы Фарадея. Примеры металлов, получаемых электролизом водных растворов. Реакции электролиза.
- Факторы, определяющие последовательность разряда ионов при электролизе?
- 18. Перенапряжение и факторы, которые определяют его величину.
- 19. Электрохимическая коррозия на примере систем Fe-Cu и Fe-Sn.
- 20. Защита металлов от коррозии.

По данным о понижении температуры замерзания (ΔT , K) водных растворов (по сравнению с чистой водой) для хлорида натрия, ацетона и уксусной кислоты при различных концентрациях (г вещества на 100 г воды) определите состояние (электролит, неэлектролит, ассоциат) растворенных веществ в воде. Объясните выявленные различия в состоянии рассматриваемых веществ. Криоскопическая постоянная воды ($K_{\rm Kp}$) равна 1,86.

№ п/п	Хлорид натрия		Ацетон (Ацетон (СН ₃) ₂ СО		я кислота СООН
	Концен-	ΔΤ	Концен-	ΔT	Концен-	ΔΤ
	трация		трация		трация	
1	0,584	0,347	0,581	0,186	6,006_	1,148
2	1,169	0,693	1,162	0,372	12,010	2,296
3	1,759	1,022	1,742	0,558	18,015	3,444
4	2,223	1,358	2,323	0,744	24,020	4,592
5	2,922	1,693	2,904	0,930	30,025	5,740
6	3,506	2,030	3,458	1,116	36,030	6,888
7	4,091	2,368	4,066	1,302	42,035	8,036
8	4,675	2,708	4,640	1,488	48,040	9,184
9	5,260	3,048	5,227	1,674	54,045	10,332
10	5,844	3,391	5,808	1,860	60,050	11,480
11	6,429	3,738	6,389	2,046	66,056	12,628
12	7,013	4,084	6,970	2,232	72,060	13,776
13	7,597	4,413	7,550	2,418	78,065	14,924
14	8,182	4,749	8,131	2,604	84,070	16,072
15	8,766	5,084	8,712	2,790	90,075	17,220
16	9,351	5,421	9,293	2,976	69,080	18,368
17	9,935	5,759	9,874	3,162	102,085	19,516
18	10,520	6,099	10,454	3,348	108,090	20,664
49	11,104	6,439	11,035	3,534	114,095	21,812
20	11,689	6,782	11,616	3,720	120,100	22,960

Вопрос 3

Оцените с использованием нижеприведенных таблиц активность (а) ионов в растворах указанных электролитов с концентрацией C (моль/л).

No	Ион	Электролит	С,	No	Ион	Электро-	С,
п/п			моль/л	п/п		_лит	моль/л
1	H ⁺	HCl	0,002	11	Cd^{2+}	CdCl ₂	0,133
2	Cl.	HCl	0,005	12	Zn ²⁺	ZnCl ₂	0,166
3	Ag ⁺	AgNO ₃	0,01	13	Fe ²⁺	FeSO ₄	0,025
4	I.	НІ	0,02	14	Cd ²⁺	CdSO ₄	0,05
5	Br ⁻	HBr	0,05	15	Cu ²⁺	CuSO ₄	0,075
6	Ni ²⁺	NiCl ₂	0,007	16	Ni ²⁺	NiSO ₄	0,10
7	Co ²⁺	CoCl ₂	0,017	17	Zn ²⁺	ZnSO ₄	0,125
8	Pb ²⁺	Pb(NO ₃) ₂	0,033	18	Cr ³⁺	CrCl ₃	0,017
9	Cu ²⁺	CuCl ₂	0,066	19	Fe ³⁺	FeCl ₃	0,033
10	S ²⁻	K ₂ S	0,10	20	In ³⁺	In(NO ₃) ₃	0,05

Приближенные значения коэффициентов активности (y_{\pm}) ионов при различных ионных силах раствора (*I*) приведены в приложении, табл. 12).

Вопрос 4

Рассчитайте значения потенциала электрода в растворе электролита с активностью (а) потенциалообразующих ионов (см. вопрос 3). Воспользуйтесь значениями стандартных электродных потенциалов (приложение табл. 10).

№	Электрод	No	Электрод
п/п		п/п	
1	Pt,H ₂ HCl	11	Cd CdCl ₂
2	Pt,Cl ₂ HCl	12	Zn ZnCl ₂
3	Ag AgNO ₃	13	Fe FeSO ₄
4	Pt,I ₂ HI	14	Cd CdSO ₄
5	Pt,Br ₂ HBr	15	Cu CuSO ₄
6	Ni NiCl ₂	16	Ni NiSO ₄
7	Co CoCl ₂	17	Zn ZnSO ₄
8	Pb Pb(NO ₃) ₂	18	Cr CrCl ₃
9	Cu CuCl ₂	19	Fe FeCl ₃
10	Pt,S K ₂ S	20	In In(NO ₃) ₃

Составьте гальванический элемент из двух электродов: стандартного (вопрос 5) и нестандартного (вопрос 4) и рассчитайте его ЭДС. Напишите электронно-ионные уравнения электродных процессов и ионно-молекулярное уравнение токообразующей химической реакции, протекающей в гальваническом элементе. Определите направление перемещения электронов по проводнику первого рода и ионов в электролите.

№ п/п	Стандартный электрод	№ п/п	Стандартный электрод
1	Zn ZnCl ₂	11	Zn Zn(NO ₃) ₂
2	Cd CdCl ₂	12	Cu CuCl ₂
3	Pt,H ₂ HNO ₃	13	Pt,H ₂ H ₂ SO ₄
4	Ag AgNO ₃	14	Ni NiSO ₄
5	Pt,H ₂ HBr	15	Fe FeSO ₄
6	Cu CuCl ₂	16	Pt,H ₂ HCl
7	Co CoCl ₂	17	Zn ZnSO ₄
8	Fe FeCl ₂	18	Co CoSO ₄
9	Cd CdCl ₂	19	Pt,Cl ₂ HCl
10	Pt,H ₂ HC1	20	Pt,H ₂ HNO ₃

Вопрос 6

Определите продукты электролиза водного раствора соли. Запишите уравнения электродных реакций и суммарное уравнение

электролиза.

№	Соль	pН	Материал	Материал
п/п		раствора	анода	катода
1	Pb(NO ₃) ₂	< 7	графит	свинец
2	Cu(NO ₃) ₂	< 7	медь	медь
3	CuSO ₄	< 7	графит	медь
4	AgNO ₃	< 7	графит	серебро
5	CdCl ₂	< 7	графит	кадмий
6	$Zn(NO_3)_2$	< 7	графит	цинк
7	CuCl ₂	< 7	графит	графит
8	AgNO ₃	< 7	графит	графит
9	NaNO ₃	≈ 7	графит	графит

				
No	Соль	pН	Материал	Материал
п/п		раствора	анода	катода
10	KNO ₃	≈ 7	графит	графит
11	CuSO ₄	< 7	медь	графит
12	CaCl ₂	≈ 7	графит	графит
13	NaC1	≈ 7	графит	платина
14	ZnCl ₂	< 7	графит	цинк
15	MgCl ₂	< 7	графит	графит
16	K ₂ SO ₄	≈ 7	графит	графит
17	Pb(NO ₃) ₂	< 7	свинец	свинец
18	Na ₂ SO ₄	≈ 7	графит	графит
19	Pb(NO ₃) ₂	< 7	свинец	графит
20	AlCl ₃	< 7	графит	графит

Значения перенапряжения выделения водорода, кислорода и хлора на электродах указаны в таблице 11 приложения.

Вопрос 7

Какой из металлов при нарушении целостности покрытия будет подвергаться коррозии в кислой среде в первую очередь. Для тех же коррозионных пар напишите уравнения катодной и анодной реакций.

No	Основной Ме/	No	Основной Ме/
п/п	Ме покрытия	п/п	Ме покрытия
1	Fe/Zn	11	Pb/Cu
2	Fe/Al	12	Fe/Cu
3	Fe/Pb	13	Pb/Zn
4	Zn/Sn	14	Sn/Al
5	Fe/Sn	15	Fe/Pb
6	Cd/Sn	16	Pb/Ag
7	Fe/Ag	17	Cd/Ag
8	Cu/Sn	18	Fe/Ag
9	Cu/Cd	19	Al/Sn
10	Pb/Cd	20	Al/Zn

Тема 16. КИСЛОТНО-ОСНОВНЫЕ СИСТЕМЫ

Изучите следующие понятия, определения, сведения: кислоты и основания по Аррениусу, Бренстеду и Льюису; константы кислотности и основности, расчет рН водных растворов кислот и оснований, кислотно-основные индикаторы.

Вопрос 1

Допишите уравнения реакций кислотно-основного взаимодействия. Укажите пары сопряженных кислот и оснований Бренстеда, а также кислоты Льюиса.

1.
$$CO_3^{2-} + H_2O \rightarrow$$

 $Fe^{3+} + 6CN^{-} \rightarrow$

3.
$$CH_3COOH + H_2O \rightarrow Au^{3+} + 4Br^{-} \rightarrow$$

5.
$$CH_3COOH + H_2SO_4 \rightarrow Co^{2+} + 6 SCN^- \rightarrow$$

7.
$$Ag^+ + 2NH_3 \rightarrow$$

$$H_2PO_4^- + OH^- \rightarrow$$

9.
$$HCO_3^- + H_2O \rightarrow$$

$$Al^{3+} + H_2O \rightarrow$$

11. HPO
$$_4^{2-}$$
 + H₂O \rightarrow Ni²⁺ + 4CN $^ \rightarrow$

13.
$$H_2PO_4^- + OH^- \rightarrow$$

$$Hg^{2+} + 4Br^{-} \rightarrow$$
15. $NH_3 + H_2O \rightarrow$

$$Cu^{2+} + 4NH_3 \rightarrow$$

17.
$$HS^- + OH^- \rightarrow$$

$$Ag^+ + 2S_2O_3^{2-} \rightarrow$$

19.
$$HS^{-} + H_2O \rightarrow$$

 $Au^{3+} + 4Cl^{-} \rightarrow$

2.
$$NH_4^+ + OH^- \rightarrow Zn^{2+} + H_2O \rightarrow$$

4. HF + H₂O
$$\rightarrow$$
 Fe³⁺ + 6F \rightarrow

6.
$$CH_3COO^- + H_2O \rightarrow Be^{2^+} + 4OH^- \rightarrow$$

8.
$$H_2S + OH^- \rightarrow$$

 $Cd^{2+} + 4NH_3 \rightarrow$

10.
$$CN^{-} + H_2O \rightarrow$$

$$UO_2^{2+} + 3SO_4^{2-} \rightarrow$$

12.
$$NO_2^- + H_2O \rightarrow Ag^+ + 4I^- \rightarrow$$

14.
$$Pb^{2+} + 4Br^{-} \rightarrow$$

 $HSO_{3}^{-} + OH^{-} \rightarrow$

16.
$$Ni^{2+} + H_2O \rightarrow$$

$$SO_3^{2-} + H_2O \rightarrow$$

18.
$$S^{2^-} + H_2O \rightarrow Co^{3+} + 6NH_3 \rightarrow$$

20.
$$NH_3 + HC1 \rightarrow Cr^{3+} + H_2O \rightarrow$$

Рассчитайте рН водных растворов кислоты и основания (для слабых многоосновных кислот и многовалентных оснований учитывайте только первую ступень диссоциации).

Νœ	Кислота,	C,	Кд	No	Кислота,	C,	Кд
n/n	основание	моль/л	слабого	n/n	основание	моль/л	слабого
			электро-				элек-
			лита				тролита
1	H ₂ SO ₄	0,2		11	HI	0,02	
	NH₄OH	0,2	1,7.10-5		Ca(OH) ₂	0,02	4,0.10-2
2	CH ₃ COOH	1,0	1,7.10-5	12	H ₂ CO ₃	0,01	4,5 10-7
	NaOH	1,0			LiOH	0,01	
3	HCl	0,05		13	СН₃СООН	0,5	1,7.10-5
	C ₆ H ₅ NH ₃ OH	0,05	4,3·10 ⁻¹⁰		Sr(OH) ₂	0,5	
4	H ₂ S	0,05	1,010-7	14	HClO₄	0,5	
	КОН	0,05			NH₄OH	0,5	1,7.10-5
5	HNO ₃	2,0	_	15	HNO ₂	0,4	5,110-4
	NH₄OH	2,0	1,7.10-5		NaOH	0,4	
6	H ₂ SO ₃	0,5	1,410-2	16	H ₂ SO ₄	0,01	
	RbOH	0,5			C ₆ H ₅ NH ₃ OH	0,01	4,3.10 ⁻¹⁰
7	HBr	0,2		17	HC10	0,01	5,0 10-8
	(CH ₃) ₂ NH ₂ OH	0,2	5,4·10 ⁻⁴		КОН	0,01	
8	$H_2Cr_2O_7$	0,05	2,3 10-2	18	HCl	0,05	
	Ba(OH) ₂	0,05			(CH ₃) ₂ NH ₂ OH	0,05	5,4.10-4
9	HClO ₄	0,01		19	HF	2,0	3,5·10 ⁻⁵
	(CH ₃) ₂ NH ₂ OH	0,01	5,4·10 ⁻⁴		RbOH	2,0	
10	H ₃ BO ₃	0,1	7,1.10 ⁻¹⁰	20	HBr	0,02	
	CsOH	0,1	′	l	C ₆ H ₅ NH ₃ OH	0,02	4,3 10 -10

Вопрос 3

Укажите, для титрования каких кислот и оснований наиболее пригодны индикаторы, приведенные в таблице: а) сильных кислот сильными основаниями; б) сильных кислот слабыми основаниями; в) слабых кислот сильными основаниями?

No	Индикатор	Область перехода
п/п		окраски, интервал рН
1	Метиловый оранжевый	3,1 – 4,4
2	Метиловый красный	4,2 - 6,3
3	Лакмус	6,0 - 8,0
4	Феноловый красный	6,8 - 8,4

		Onton tantic
No	Индикатор	Область перехода
п/п		окраски, интервал рН
_ 5	Фенолфталеин	8,2 – 10,0
6	Ализариновый желтый	10,1 – 12,1
7	Пикриновая кислота	0,0 - 1,3
8	Метиловый фиолетовый	1,0 – 1,5
9	Бромтимоловый синий	6,0 - 7,6
10	Ализариновый желтый	10,1-12,1
11	Индигокармин	11,6 – 14,0
12	Хинолиновый синий	7,0 – 8,0
13	Нейтральный красный	6,8 - 8,4
14	о – Нитрофенол	5,0 – 7,0
15	Бромкрезолпурпурный	5,2 - 6,8
16	Нитразин желтый	6,0 - 7,0
17	Лакмоид	4,0 – 6,4
18	α - Нафтиловый красный	3,7 - 5,7
19	Конго красный	3,0 - 5,2
20	Малахитовый зеленый	0.1 - 2.0

Тема 17. КОНТРОЛЬНЫЕ ВОПРОСЫ (для подготовки к экзамену и выполнения итогового домашнего задания)

1. ОСНОВЫ ТЕОРИИ ХИМИИ

- 1. Химическая система. Вещество и химические превращения. Химический элемент. Простое и сложное вещество. Основные свойства химических систем. Химическая двойственность. Типы химических реакций.
- Электронное строение атома, квантовые числа, типы орбиталей. Порядок заполнения энергетических уровней и подуровней (принцип минимума энергии, принцип Паули, правило Хунда, правило Клечковского). Особенности формирования много-

- электронных подуровней (d-, f-подуровней). Электронные формулы элементов в виде энергетических ячеек. Валентность.
- 3. Периодичесская система Д.И.Менделеева (ПСЭ). Взаимосвязь химических свойств простых веществ с электронным строением атомов. Причины несоответствия высшей валентности рэлементов 5 7 групп второго периода и дэлементов 8 группы номеру группы ПСЭ. Зависимость радиусов атомов, энергии ионизации, сродства к электрону и электроотрицательности от положения элемента в ПСЭ. Металлы и неметаллы.
- Химическая связь. Методы валентных связей и молекулярных орбиталей. Основные виды (ковалентная, ионная, донорноакцепторная, водородная и металлическая) и характеристики (энергия, длина, направленность, полярность и поляризуемость) химической связи. Взаимосвязь вида, характеристик химической связи и электроотрицательности элементов. Характеристики химической связи, состав и строение молекул. Степень окисления.

Межмолекулярные взаимодействия. Структурные формулы молекул и ассоциатов.

- 5. Энергетика химических процессов. Тепловой эффект и энтальпия реакции. Законы термохимии. Энтальпия образования химических соединений. Энтропия. Энергия Гиббса, ее связь с направлением химических процессов. Расчет термодинамических функций химических реакций по справочным данным. Оценка реакционной способности и устойчивости веществ.
 - б. Химическое равновесие. Химический потенциал и его свойства. Активность. Коэффициент активности неэлектролита и электролита. Закон действия масс для равновесия. Термодинамическая и концентрационная константы равновесия. Химическое равновесие в гетерогенных системах. Закон Бертло-Нернста. Произведение растворимости. Гидролиз. Смещение равновесия диссоциации воды в растворах электролитов. Гидролиз по катиону и аниону (изменение рН среды). Константа и степень гидролиза. Принцип Ле Шателье.
- Химическая кинетика. Скорость химической реакции и закон действия масс для скорости. Порядок и молекулярность реакции. Кинетическое уравнение реакции первого порядка. Зави-

- симость скорости реакции от температуры. Уравнение Аррениуса. Энергия активации. Катализ.
- 8. Растворы. Способы выражения концентрации. Растворители и их свойства. Особенности воды как растворителя. Водородный показатель. Электролитическая диссоциация, сольватация. Связь свойств растворов (осмотического давления, температуры кипения и замерзания) с состоянием растворенного вещества. Закон Рауля. Среднеионный коэффициент активности и активность. Константа и степень диссоциации слабых электролитов. Закон разбавления Оствальда.
- 9. Коллоидные растворы. Дисперсные системы и области их применения. Строение мицеллы. Правило Пескова-Фаянса. Адсорбция. Свойства коллоидных растворов (агрегативная и кинетическая устойчивость, седиментация, коагуляция, оптические и электрические). Методы получения и разрушения коллоидных систем.
- 10. Кислотно-основные системы. Протонная и электронная теории кислот и оснований. Кислоты Льюиса и Бренстеда. Гидролиз и комплексообразование как частные случаи кислотно-основных взаимодействий.
- 11. Комплексные соединения. Классификация. Типичные комплексообразователи и лиганды. Координационное число. Взаимосвязь строения комплексов и гибридизации орбиталей комплексообразователей. Внутрикомплексные соединения. Двойные соли. Константы нестойкости. Разрушение комплексов с использованием реакций осаждения.
- 12. Электрохимические процессы. Окислительно-восстановительные реакции. Окислители и восстановители. Методы составления уравнений ОВР. Направление реакции ОВР. Двойной электрический слой, электродный потенциал, гальванический элемент, электродвижущая сила. Уравнение Нернста.
- Электролиз водных растворов. Потенциалы водородного и кислородного электродов, их зависимость от рН среды. Перенапряжение. Последовательность разряда ионов на катоде и аноде.

14. Коррозия металлов. Виды коррозии. Специфика электрохимической коррозии. Примеры коррозии в системах цинк-медь, железо-цинк. Методы защиты от коррозии.

ІІ. СВОЙСТВА ЭЛЕМЕНТОВ И ИХ СОЕДИНЕНИЙ

- 15. Водород. Особенности его положения в ПСЭ. Химические свойства. Синтез и свойства гидридов. Изотопы водорода. Применение водорода и его соединений. Водородная энергетика.
- 16. Свойства s- и d- металлов I группы. Сравнение электронного строения и реакционной способности. Токсичность. Особенности свойств лития. Области применения. Соединения меди и золота в различных степенях окисления. Методы получения d-металлов, области применения.
- 17. Свойства *d*-элементов III группы и 4*f*-элементов. Особенности свойств скандия. Лантаноиды. Лантаноидное сжатие. Зависимость химических свойств лантаноидов от степени их окисления. Свойства церия и европия. Основные методы разделения. Области применения РЗЭ и их соединений.
- 18. Радиоактивность и радиохимия. Стабильные и нестабильные изотопы. Ионизирующее излучение и его взаимодействие с веществом. Области применения изотопов. Источники радиации и ее воздействие на организм.
- 19. Свойства 5f- элементов (актиноиды). Особенности электронного строения. Сопоставление свойств лантаноидов и актиноидов в реакциях комплексообразования. Свойства тория, урана и их соединений. Свойства химических соединений актиноидов в различных степенях окисления.
- 20. Методы разделения элементов. Краткая характеристика методов осаждения, экстракции, ионного обмена. Применение транспортных химических реакций для получения металлов высокой степени чистоты.
- 21. Химические идентификация и измерение. Чистота вещества. Фаза. Аналитический сигнал и его виды. Объемный, колориметрический и гравиметрический методы измерения. Погрешность химического измерения. Проба и ее представительность. Стандартные образцы.

22. Химико-биологические системы. Предельно допустимая концентрация (ПДК). Токсичность. Ряды токсичности. Избирательная токсичность и ее применение в медицине.

III. ТИПОВЫЕ УПРАЖНЕНИЯ

- 1. Определите последовательность заполнения электронных орбиталей, характеризующихся суммами n+l, равными: a) 4; б) 5; в) 6; г) 7; д) 8.
- 2. Составьте электронные формулы элементов (полные и сокращенные в виде энергетических ячеек) с зарядами ядер: а) 11; б) 23; в) 57; г) 58; д) 92. Определите тип элемента, назовите его электроннные аналоги. Определите высшую степень окисления элемента. Для валентных электронов приведите значения их квантовых чисел.
- 3. Составьте структурные формулы соединений: а) ВаО₂, К₂U₂O₇, Na₂SO₄; б) H₂SO₃, K₂S₂O₇, Na₂S₂O₈; в) UO₂SO₄, UO₃, UO₄; г) U₃O₈, Pb₃O₄, Fe₃O₄; д) К₂Cr₂O₇, CrO₅, К₂C₂O₄. Укажите степени окисления атомов и типы химической связи между ними. Используя значения относительных электроотрицательностей, сравните любые две связи в каждом соединении по степени ионности.
- Дайте определение стандартной энтальпии образования вещества. Являются ли энтальпии нижеприведенных реакций стандартными энтальпиями образования веществ (укажите каких)?
 - а) $N_2(\Gamma) + O_2(\Gamma) \rightarrow 2NO(\Gamma);$ д) $CaO(\tau B) + CO_2(\Gamma) \rightarrow CaCO_3(\tau B);$
 - б) $N(r) + O(r) \rightarrow NO(r);$ е) $C(rpaфит) + O_2(r) \rightarrow CO_2(r);$
 - в) $N(\Gamma) + N(\Gamma) \rightarrow N_2(\Gamma);$ ж) $C(алмаз) + O_2(\Gamma) \rightarrow CO_2(\Gamma);$ г) $1/2N_2(\Gamma) \rightarrow N(\Gamma).$
- 5. Сформулируйте закономерности в изменении величины энтропии (Дж/(моль· К) веществ в приведенных рядах:
 - a) $O(\Gamma)$, 160,8; $O_2(\Gamma)$, 204,86; $O_3(\Gamma)$, 238,68;
 - б) С(алмаз), 2,44; С(графит), 5,69;
 - в) $H_2O(\pi e \pi)$, 43,9; $H_2O(\pi)$, 66,9; $H_2O(\pi a p)$, 188,7.
- 6. Не проводя расчетов, оцените возможны ли с термодинамической точки зрения следующие реакции и при каких условиях (стандартные, высокие или низкие температуры):

- а) $C_6H_{12}O_6(тв) \rightarrow 2C_2H_5OH(ж) + 2CO_2(г)$ $\Delta H^0_{298} = -69.2 \text{ кДж};$ 6) $N_2(г) + 2H_2O(ж) \rightarrow NH_4NO_2(тв)$ $\Delta H^0_{298} = 37.62 \text{ кДж};$
- $\Delta H_{298}^{298} = 37,02 \text{ кДж},$ в) $2\text{NO(r)} + \text{O}_2(\text{r}) \rightarrow 2\text{NO}_2(\text{r})$ $\Delta H_{298}^{0} = -601,92 \text{ кДж};$
- г) $CaCO_3(тв) \rightarrow CaO(тв) + CO_2(г)$ $\Delta H^{\circ}_{298} = 177,65 \text{ кДж};$ д) $TiO_2(тв) + 2C$ (графит) $\rightarrow Ti(тв) + 2CO(г)$ $\Delta H^{\circ}_{298} = 722,9 \text{ кДж}.$
- 7. Рассчитайте энергию связи Н-С1 по следующим данным:
 - 1) $H_2(r) \rightarrow 2H(r)$ $\Delta H^0_1 = 435 \text{ кДж/моль};$
 - 2) $\text{Cl}_2(\mathbf{r}) \rightarrow 2\text{Cl}(\mathbf{r})$ $\Delta H^\circ_2 = 243 \text{ кДж/моль};$
 - 3) $\Delta H_{\text{ofp}}^{0}$ HCl (г) = 92 кДж/моль.
- 8. При изучении кинетики газовой реакции A + B + 2C → D было обнаружено, что скорость реакции при увеличении концентрации A в 2 раза возрастает в 4 раза, не зависит от концентрации B и возрастает в 3 раза при увеличении концентрации C в 3 раза. Напишите кинетическое уравнение данной реакции. Укажите порядок реакции по A, B, C и общий порядок. Почему найденный экспериментально порядок не согласуется со стехиометрией уравнения, описывающего реакцию в целом?
- 9. Газовая реакция 2NO + $2H_2 \rightarrow N_2 + 2H_2O$ подчиняется кинетическому уравнению $\mathbf{v} = kC_{NO}^2 C_{H_2}$. Каковы общий порядок реакции и порядки по реагирующим веществам? Почему экспериментально найденный порядок реакции не согласуется со стехиометрическими коэффициентами участвующих в реакции веществ?
- 10. Период полураспада ²³⁹Ри равен 24000 г. Определите, какая часть ²³⁹Ри сохранится к 2500 г по отношению к 2000 г.?
- 11. Изотоп 32 66Ge распадается с испусканием позитронов, его период полураспада равен 2,5 часа. Какое количество изотопа в % от исходного сохранится по истечении: а) 2,5 часов; б) 5,0 часов; в) 7,5 часов; г) 10 часов?
- 12. Период полураспада ₅₆¹³⁹Ва равен 85 мин. Какое время потребуется для распада: а) 50 %; б) 75 %; в) 82,5 %; г) 88,75 % этого изотопа от исходного?
- 13. Установите возраст куска старого дерева, интенсивность радиоактивного излучения изотопа ¹⁴₆C которого в 10 раз меньше,

- чем у такого же куска растущего дерева одинакового типа. Период полураспада ${}^{14}_{6}$ С равен 5760 лет.
- 14. В какую сторону сместится химическое равновесие простой реакции A(r) + 2B(r)

 2C(r) + Q, если увеличить давление в 3 раза и одновременно повысить температуру на 20°С. Температурный коэффициент скорости экзотермической реакции равен 2, а эндотермической равен 3.
- 15. Выделите среди перечисленных ниже реакций группу быстрых и группу медленных реакций, исходя из природы реагирующих частиц. Приблизительно оцените величину энергии активации каждой реакции:
 - а) $C(графит) + O_2(г) \rightarrow CO_2(г);$
 - 6) $CH_4(r) + 2O_2(r) \rightarrow CO_2(r) + 2H_2O(r)$;
 - $B) Ag^{+}((p-p) + Cl^{-}(p-p) \rightarrow AgCl(TB);$
 - Γ) OH⁻(p-p) + H⁺(p-p) \rightarrow H₂O(ж);
 - д) $KOH(p-p) + HCl(p-p) \rightarrow KCl(p-p) + H_2O(ж);$
 - e) H· (r) + H· (r) \rightarrow H₂(r);
 - ж) Cl· (r) + Cl· (r) \rightarrow Cl₂(r).
- 16. Вычислите энергию активации реакции А → В, если в температурном интервале 25 35°С константа скорости данной реакции возрастает: а) в 2 раза; б) в 3 раза; в) в 4 раза; г) в 2,5 раза, д) в 3,5 раза.
- 17. Напишите выражения констант равновесия и приведите их названия для следующих физико-химических процессов:
 - a) $Cr^{3+}(p-p) + H_2O(p-p) \stackrel{?}{\leftarrow} CrOH^{2+}(p-p) + H^+(p-p);$
 - 6) $Ag_3PO_4(TB) \stackrel{?}{\leftarrow} 3Ag^+(p-p) + PO_4^{3-}(p-p);$
 - B) $H_2SO_3(p-p) \neq HSO_3^-(p-p) + H^+(p-p);$
 - г) $H_2O(ж)$ $\stackrel{\rightarrow}{\leftarrow}$ H^+ (гидратир.) + OH^- (гидратир.);
 - д) $[Cu(NH_3)_4]^{2+}(p-p) \stackrel{?}{\leftarrow} Cu^{2+}(p-p) + 4NH_3(p-p).$
- Напишите выражения констант равновесия. Для первой реакции с использованием справочных данных рассчитайте константу равновесия.
 - a) $2\text{NaOH (p-p)} + \text{CuSO}_4(\text{p-p}) \rightleftarrows \text{Cu(OH)}_2(\text{TB}) + \text{Na}_2\text{SO}_4(\text{p-p});$ $\text{BaCl}_2(\text{p-p}) + \text{Na}_2\text{SO}_4(\text{p-p}) \rightleftarrows \text{BaSO}_4(\text{TB}) + 2\text{NaCl (p-p)};$

- б) $.CuO(тв) + 2HCl(p-p) \rightleftharpoons CuCl_2(p-p) + H_2O(ж);$ $ZnSO_3(тв) \rightleftharpoons ZnO(тв) + SO_2(r);$
- B) $Na_2CO_3(p-p) + H_2O(x) \rightleftharpoons NaHCO_3(p-p) + NaOH(p-p);$ $ZnO(\tau B) + H_2(\tau) \rightleftharpoons Zn(\tau B) + H_2O(\tau);$
- r) $CO_2(r) + H_2(r) \rightleftharpoons CO(r) + H_2O(r);$ $4NH_3(r) + 3O_2(r) \rightleftharpoons 2N_2(r) + 6H_2O(r);$
- д) $CuSO_4(p-p) + 4NH_3(r) \stackrel{\rightarrow}{\leftarrow} [Cu(NH_3)_4]SO_4(p-p);$ $Th(NO_3)_4(p-p) + 4Na_2CO_3(p-p) \stackrel{\rightarrow}{\leftarrow} Na_4[Th(CO_3)_4](p-p) + 4NaNO_3(p-p).$
- 19. При некоторой температуре равновесие в системе $2NO_2 \stackrel{>}{\sim} 2NO + O_2$

установилось при следующих значениях концентраций: $C_{\text{NO}_2} = 0,006$ моль/л; $C_{\text{NO}} = 0,024$ моль/л. Найдите константу равновесия реакции и исходную концентрацию NO_2 .

- 20. Найдите константу равновесия реакции $N_2O_4 \rightleftharpoons 2NO_2$, если начальная концентрация N_2O_4 составляла 0,08 моль/л, а к моменту наступления равновесия диссоциировало 50% N_2O_4 .
- 21. В закрытом сосуде протекает реакция АВ(г)

 Константа равновесия реакции равна 0,04, а равновесная концентрация вещества В составляет 0,02 моль/л. Найдите начальную концентрацию вещества АВ. Сколько процентов вещества АВ разложилось?
- 22. Константа диссоциации уксусной кислоты при 25° C равна $1,8\cdot10^{-5}$. Вычислите степень ее диссоциации (α) и концентрацию ионов водорода в 0,02 моль/л растворе кислоты. Как изменится C_{H^+} , если к 1 л 0,02 моль/л раствора кислоты добавить CH₃COONa (в граммах): а) 0,41; б) 0,82; в) 4,1; г) 8,2; д) 16,4.

 Считая диссоциацию полной, вычислите молярную концентрацию катионов в следующих растворах:

No	Соль	Объем раствора	Содержание соли
n/n			в растворе
a	$Cr_2(SO_4)_3$	200 м ³	800 кг
б	ZnCl ₂	90 л	90 г
В	LaCl ₃	120 л	2,4 кг

24. Приведены растворенное вещество, его конценрация (в граммах вещества на 100 г воды) и понижение температуры замер-

- зания этого раствора по сравнению с чистой водой (°С): хлорид натрия: 5,26, 3,05; ацетон: 5,23, 1,67; уксусная кислота: 48,04, 9,18. Криоскопическая постоянная воды равна 1,86. По этим данным определите состояние (электролит, неэлектролит, ассоциат) растворенных веществ в воде. Объясните выявленные различия в состоянии рассматриваемых веществ.
- 25. Рассчитайте концентрацию глюкозы $C_6H_{12}O_6$ (массовую долю в %) в растворе, изотоничном крови. Осмотическое давление крови 7,8 атм. Температура 36,6 °C. Универсальная газовая постоянная R равна 0,082 л·атм/моль·К. Плотность раствора примите равной 1 г/мл.
- Растворы глюкозы и хлорида натрия имеют одинаковые осмотические давления. Как относятся друг к другу молярные концентрации этих веществ в данных растворах.
- 27. Определите молярную массу гемоглобина, если известно, что осмотическое давление раствора гемоглобина, содержащего 0.2 г гемоглобина в 20 мл раствора при 25°C составляет 383.97 Па.
- Определите активность электролитов (концентрация электролитов 0,1 моль/л): а) NaCl, CaCl₂; б) KMnO₄, UO₂SO₄; в) K₂Cr₂O₇, Th(SO₄)₂; г) ThCl₄, [Cu(NH₃)₄]Cl₂; д) [Cu(NH₃)₄]SO₄, AlCl₃. Для расчета используйте уравнение первого приближения теории Дебая-Хюккеля.
- 29. Какое количество NaOH потребуется для осаждения Al(OH)₃ из 1 моля двойной соли KAl(SO₄)₂?
- 30. Молекулярная формула соли CrCl₃·5H₂O, координационное число хрома равно 6. Вычислите, какой объем 0,1 моль/л раствора AgNO₃ понадобится для осаждения внешнесферного хлора, содержащегося в 200 мл 0,01 моль/л раствора комплексной соли.
- 31. Определите, чему равны заряды комплексных ионов, степени окисления и координационные числа комплексообразователей в соединениях K₄[Fe(CN)₆] и K₃[Fe(CN)₆]. Напишите уравнения диссоциации этих соединений в водных растворах.
- 32. Вычислите степень диссоциации по первой ступени (в %) комплексного иона $[Ag(CN)_2]$ в 0,001 моль/л растворе $K[Ag(CN)_2]$, если константа нестойкости первой ступени равна 1,4·10⁻²⁰.

- 33. Для электролитов различного валентного типа (KA, K_2A и K_3A) $\Pi P = 10^{-20}$. Оцените, в какой последовательности увеличивается растворимость этих солей.
- 34. Составьте уравнения гидролиза следующих соединений: EuC_2 , CeC_2 , CaH_2 , Cl_2 , SO_2Cl_2 .
- 35. Смешиванием 25 мл 0,01 моль/л раствора бромида калия и 20 мл 0,008 моль/л раствора нитрата серебра получен золь бромида серебра. Напишите формулу мицеллы, определите знак заряда частицы золя.
- 36. Приведены электролиты и пороги коагуляции некоторого золя, ммоль/л: NaNO₃, 250; Mg(NO₃)₂, 20; Fe(NO₃)₃, 0,5. Определите, какие ионы перечисленных электролитов являются коагулянтами, как заряжены частицы золя.
- 37. Вычислите значения электродного потенциала водорода:
 - а) в чистой воде;
 - б) в 0,05 моль/л растворе H_2SO_4 ($\alpha = 1$);
 - в) в 0,05 моль/л растворе КОН ($\alpha = 1$);
 - г) в 0,02 моль/л растворе CH₃COOH ($K_{\text{Д}}(\text{CH}_{3}\text{COOH}) = 1,8 \cdot 10^{-5}$;
 - д) в 0,02 моль/л растворе NH₄OH ($K_{\text{Д}}(\text{NH}_{4}\text{OH}) = 1,7 \cdot 10^{-5}$.
 - Также вычислите ЭДС концентрационного гальванического элемента, составленного из двух водородных электродов стандартного и помещенного в раствор указанной концентрации.
- 38. Составьте из двух электродов гальванический элемент. Напишите уравнения реакций на катоде и аноде, а также суммарное уравнение токообразующей реакции. Используя значения стандартных электродных потенциалов, рассчитайте ЭДС:
 - a) Zn ZnSO₄, Cu CuSO₄; 6) Ag AgNO₃, Cu Cu(NO₃)₂;
 - в) Fe FeCl₃, Cu CuCl₂; г) Zn ZnCl₂, Ni NiCl₂;
 - д) Au AuCl₃, Zn ZnCl₂.
- 39. Напишите уравнения реакций, протекающих на электродах при электролизе водного раствора CuCl₂ при pH =0. Катод и анод графит. Значения перенапряжений выделения H₂, O₂, и Cl₂ на электродах возьмите из приложения, табл. 11.
- 40. Напишите уравнения реакций, протекающих на электродах при электролизе водного раствора NaCl (перенапряжением на электродах можно пренебречь).

- 41. Железо, погруженное в разбавленный раствор соляной кислоты, растворяется медленно. Изменится ли скорость растворения, если железо находится в контакте с медью или с цинком? Напишите схемы происходящих процессов электрохимической коррозии.
- 42. Приведите уравнения химических реакций, которые могут быть использованы для разделения соединений тория (IV) и гадолиния (III), исходно находящихся в водном растворе.
- 43. Какие химические реакции могут быть использованы для разделения соединений скандия и лантана?
- 44. Приведите примеры химических рекций, которые можно использовать для разделения соединений урана (VI) и тория, урана (VI) и лантана.
- 45. Какие реакции можно использовать для выделения соединений церия (IV) и европия (II) из смеси соединений лантаноидов?
- 46. Какие процессы можно использовать для отделения соединений урана (VI) от примесей соединений железа (III) и редкоземельных элементов? Напишите уравнения реакций.
- 47. Можно ли выделить лантаноиды в виде металлов электролизом водных растворов? Какие реакции используют на практике для выделения этих металлов в чистом виде?
- 48. Используя протонную теорию кислот и оснований Бренстеда, укажите сопряженные пары кислот и оснований в реакциях:
 - a) $HCl + H_2O = H_3O^+ + Cl^-$;
 - 6) $NH_3 + H_2O = NH_4^+ + OH_5^-$;
 - B) $CO_3^{2-} + H_2O = HCO_3^{-} + OH_3^{-}$;
 - r) $CH_3COO^- + HCl = CH_3COOH + Cl^-$;
 - д) $HF + H_2O = F^- + H_3O^+$.
- 49. В приведенных реакциях укажите, какое вещество является кислотой Льюиса, а какое основанием Льюиса:
 - a) $Al^{3+} + H_2O = AlOH^{2+} + H^+$;
 - 6) $[FeF_6]^{3-} + 6CN^- = [Fe(CN)_6]^{3-} + 6F^-$;
 - B) $4NH_3 + Cu^{2+} = [Cu(NH_3)_4]^{2+}$;
 - $\Gamma) BF_3 + F = [BF_4] ;$
 - μ) AuCl₃ + Cl $^{-}$ = [AuCl₄] $^{-}$.

- 49. Какие новые изотопы образуются при распаде следующих изотопов:
 - а) при β -распаде ${}^{14}_{6}$ C; ${}^{17}_{7}$ N; ${}^{9}_{3}$ Li; ${}^{21}_{9}$ F
 - б) при eta^{+} -распаде $^{19}_{10}\,{
 m Ne}$; $^{13}_{7}\,{
 m N}$; $^{8}_{5}\,{
 m B}$; $^{17}_{9}\,{
 m F}$
 - в) при lpha-распаде $^{10}_{5}{
 m B}$; $^{226}_{88}{
 m Ra}$; $^{238}_{92}{
 m U}$; $^{232}_{90}{
 m Th}$.

IV.ТИПОВЫЕ УРАВНЕНИЯ ХИМИЧЕСКИХ РЕАКЦИЙ

1. Допишите уравнения реакций получения оксидов, гидроксидов, кислот и солей:

а) оксидов

окисление простых веществ: $Th + O_2 \rightarrow$; $C + O_2 \rightarrow$; окисление сложный веществ: $FeS + O_2 \rightarrow$; $CH_4 + O_2 \rightarrow$;

разложение гидроксидов и солей: $Sc(OH)_3 \xrightarrow{t}$; $La_2(CO_3)_3 \xrightarrow{t}$; $Y_2(C_2O_4)_3 \xrightarrow{t}$; $Cu(NO_3)_2 \xrightarrow{t}$;

взаимодействие щелочных металлов $Na + H_2O \rightarrow$;

б) гидроксидов

и их оксидов с водой: $K_2O + H_2O \rightarrow$; электролиз растворов хлоридов щелочных металлов: NaCl \rightarrow ; взаимодействие щелочей с солями : $Fe_2(SO_4)_3 + NaOH \rightarrow$; $(NH_4)_2Fe(SO_4)_2 + NaOH \rightarrow$;

в) кислот

взаимодействие ангидридов с водой: $SO_3 + H_2O \rightarrow$; $P_2O_5 + H_2O \rightarrow$:

вытеснение сильной кислотой слабой из ее солей:

 $Na_2SiO_3 + H_2SO_4 \rightarrow$;

реакция нейтрализации : $KOH + HNO_3 \rightarrow$; взаимодействие кислот с основаниями или амфотерными оксидами : $K_2O + HClO_4 \rightarrow$;

 $Al_2O_3 + H_2SO_4 \rightarrow;$

г) солей

взаимодействие кислот с солями:

 $CuCl_2 + H_2S \rightarrow$:

взаимодействие двух солей:

 $AgNO_3 + NaCl \rightarrow$;

 $FeCl_3 + KCN \rightarrow KY = 6$:

 $AgBr + Na_2S_2O_3 \rightarrow KY = 2;$

взаимодействие щелочей с кислотными или амфотерными

оксидами и гидроксидами:

 $Ba(OH)_2 + SO_2 \rightarrow$; NaOH + WO₃ \rightarrow :

 $Al_2O_3 + NaOH \rightarrow$;

 $KOH + Cr(OH)_3 \rightarrow KY=6$;

д) солей

взаимодействие основных оксидов с кислотными или

амфотерными:

 $CaO + SiO_2 \rightarrow$:

 $Al_2O_3 + K_2O \rightarrow$:

взаимодействие металлов с неметаллами: La + $Cl_2 \rightarrow$;

взаимодействие металлов с кислотами: $Cu + H_2SO_4$ (конц) \rightarrow ; $Sc + H_2SO_4(pa36) \rightarrow$;

взаимодействие металлов с солями:

 $Fe + CuSO_4 \rightarrow .$

- 2. Какие соли образуются при следующих взаимодействиях:
 - a) Ba(OH)₂ + H₃PO₄ \rightarrow ; $La(OH)_3 + H_2SO_4 \rightarrow$;

6) $CuSO_4 + NH_4OH \rightarrow KY=4$; $AgBr + Na₂S₂O₃ \rightarrow KH = 2$:

 $Th(OH)_4 + HCl \rightarrow$;

AlOHSO₄ + $H_2SO_4 \rightarrow :$

 $Mg(HCO_3)_2 + Ca(OH)_2 \rightarrow :$

 $KOH + H_1PO_1 \rightarrow$;

 $Na_3[Cr(OH)_6] + HCl \rightarrow$;

 $Y(OH)_3 + H_2SO_4 \rightarrow .$

- 3. Напишите уравнения реакций гидролиза следующих сединений в молекулярной и ионно-молекулярной формах:
 - a.) CeC; PBr₅; CrOHCl₂; K₂S; Fe₂(CO₃)₃;
 - 6.) EuC₂; LiH; Cu(NO₃)₂; Na₂HPO₄; Al₂S₃;
 - B.) CeC2; NaH; KCN; ThCl4; Cr2S3;
 - r.) CaH₂; PCl₃; UCl₆; Pb(NO₃)₂; CuCO₃;
 - д.) CoCl₂; CaH₂; ZrBr₄; Al₂(CO₃)₃; Na₂S.
 - 4. Составьте уравнения реакций в молекулярной и ионномолекулярной формах. Объясните влияние среды на восстановление ионов марганца:

```
KMnO_4 + FeSO_4 + H_2SO_4 \rightarrow;

KMnO_4 + KI + H_2O \rightarrow;

KMnO_4 + K_2SO_3 + KOH \rightarrow;
```

- 5. Допишите уравнения реакций, расставьте коэффициенты, укажите, какую роль играет в каждом случае H_2O_2 :
- a) PbS + $H_2O_2 \rightarrow ;$ $HOCl + H_2O_2 \rightarrow HCl + ...;$ B) $I_2 + H_2O_2 \rightarrow HIO_3 + ...;$ $K_2Cr_2O_7 + H_2O_2 + H_2SO_4 \rightarrow ;$
 - 6) $KMnO_4 + H_2O_2 + H_2SO_4 \rightarrow ;$ $H_2S + H_2O_2 \rightarrow H_2SO_4 +$
- 6. Допишите окислительно-восстановительные реакции, протекающие в растворе, расставьте коэффициенты, рассчитайте ΔG° реакции с использованием стандартных окислительновосстановительных потенциалов, определите направление процессов:
- a) $K_2Cr_2O_7 + SnSO_4 + H_2SO_4 \rightarrow Sn(SO_4)_2 + ...;$ $FeSO_4 + KClO_3 + H_2SO_4 \rightarrow KCl + ...;$ $PbO_2 + HCl \rightarrow PbCl_2 \downarrow + ...;$
- 6) $KBr + KMnO_4 + H_2SO_4 \rightarrow Br_2 + ...;$ $FeSO_4 + KClO_3 + H_2SO_4 \rightarrow KCl + ...;$ $Ce(OH)_4 + HCl \rightarrow CeCl_3 + ...;$
- в) $K_2Cr_2O_7 + HCl(конц.) \rightarrow Cl_2 + ...;$ $Zn + HNO_3(разб.) \rightarrow NH_4NO_3 + ...;$ $MnSO_4 + Br_2 + NaOH \rightarrow MnO_2 \downarrow + ...;$
- r) $KMnO_4 + KI + H_2SO_4 \rightarrow I_2 + ...;$ $HNO_2 + Na_2Cr_2O_7 + H_2SO_4 \rightarrow HNO_3 + ...;$ $H_2O_2 + K_2Cr_2O_7 + H_2SO_4 \rightarrow O_2 + ...;$
- π) KMnO₄ + HCl \rightarrow Cl₂ + ...; KMnO₄ + Zn + H₂SO₄ \rightarrow MnSO₄ + ...; UO₂SO₄ + Zn + H₂SO₄ \rightarrow U(SO₄)₂ +
- 7. Напишите полное и ионно-молекулярное уравнения реакций комплексообразования. Напишите в общем виде выражения для расчета ΔG° этих реакций, а также для константы нестойкости комплексного иона:
 - a) $CuSO_4 + NH_4OH \rightarrow KY = 4$; $Hg(NO_3)_2 + KI \rightarrow KY = 4$;

- 6) $Fe(OH)_2 + KCN \rightarrow KY = 6$; $AgCl + KCN \rightarrow KY = 2;$
- B) $Fe(SCN)_3 + KF \rightarrow KY = 6$; $Zr(OH)_4 + KF \rightarrow KY = 6$;
- г) UO₂SO₄ + Na₂CO₃ \rightarrow KY = 6, CO₃²⁻ бидентатный лиганд; $AgNO_3 + Na_2S_2O \rightarrow KY = 2, S_2O_3^{2-}$ - монодентатный лиганд;
- д) Th(SO₄)₂ + Na₂C₂O₄ \rightarrow KЧ = 8, C₂O₄²⁻ бидентатный лиганд;
- $Th(SO_4)_2 + K_2CO_3 \rightarrow KY = 8$, CO_3^{2-} бидентатный лиганд.
- Напишите уравнения реакций, протекающих при образовании 8. золей, и схему построения золей. В избытке взяты ионы электролита, который указан первым исходным реагентом:
 - a) $KI + AgNO_3 \rightarrow$; 6) $K_4[Fe(CN)_6] + ZnSO_4 \rightarrow$; $AgNO_3 + KI \rightarrow :$ $AlCl_3 + Al(OH)_3 \rightarrow ;$
 - B) $K_4[Fe(CN)_6] + Th(SO_4)_2 \rightarrow ; \quad \Gamma) KAuO_2 + Au \rightarrow ;$ $Na_2S + Cd(NO_3)_2 \rightarrow$ $FeCl_3 + Fe(OH)_3 \rightarrow :$
 - π) KBr + Pb(NO₃)₂ \rightarrow : $Pb(NO_3)_2 + KBr \rightarrow .$

V. ХИМИЧЕСКИЕ СВОЙСТВА ЭЛЕМЕНТОВ И ИХ СОЕДИНЕНИЙ

s - элементы 1 группы

 $AgNO_3 + NaOH \rightarrow$; $CuSO_4 + H_2O \rightarrow$;

(CuOH),CO3 -1; CuCl₂ (p-p) —

```
Au + HCl + HNO_3 \rightarrow NO + ...
                                                    KY = 4;
Ag + O_2 + NaCN + H_2O \rightarrow
                                                    KY = 2;
AgBr + Na_2S_2O_1 \rightarrow
                                                    KY = 2;
CuSO_4 + NH_4OH \rightarrow
                                                    KY = 4.
                                   <u>d-элементы III группы</u>
YF_3 + Mg \xrightarrow{t};
                                                                  La_2(CO_3)_3 \stackrel{t}{\longrightarrow} \cdot
                                                                  Sc(OH)_3 \stackrel{t}{\longrightarrow} :
La + H_2O \rightarrow ;
                                                                  Y_2(C_2O_4)_3
Sc + H_2SO_4(pa36.) \rightarrow ;
Y(OH)_3 + NaOH \rightarrow ;
                                                                  LaCl_3 + HF \rightarrow;
                                                                  YCl_3 + H_2C_2O_4 \rightarrow;
La(NO_3)_3 + Na_2CO_3 \rightarrow ;
Sc(OH)_3 + NaOH(конц) . t .
                                                  KY = 6;
ScCl_3 + NH_4F \rightarrow
                                                   KY = 6.
                                   р-элементы IV группы
Si + O_2 \stackrel{t}{\longrightarrow} :
                                                                   Si + Mg \stackrel{t}{\longrightarrow}
                                                                   SiH<sub>4</sub> t.
SiO_2 + C <sup>t</sup> :
GeO_2 + HCl \rightarrow ;
                                                                  GeCl₄ + H<sub>2</sub>O →
GeO_2 + H_2 \stackrel{t}{\longrightarrow} :
                                                                  SiO_2 + HF \rightarrow
                                                                   SiO_2 + NaOH
Si + NaOH + H_2O_2 \stackrel{t}{\longrightarrow} ;
Si + HNO_3 + HF \rightarrow
                                               KY = 6;
                                                KY = 6;
Ge+ NaOH + H_2O_2 \rightarrow
                                 f-элементы (актиноиды)
Th + O_2 \xrightarrow{t};
                                                                 UF<sub>6</sub> + H<sub>2</sub> \xrightarrow{t}:
U+O_2 \stackrel{t}{\longrightarrow} :
                                                                ThO_2 + Ca \xrightarrow{t};
UC_2 + H_2O \xrightarrow{t}:
                                                                 ThCl<sub>4</sub> + H<sub>2</sub>O \stackrel{t}{\longrightarrow} .
U_3O_8 + MnO_2 + H_2SO_4 \rightarrow ;
```

79

 $U(SO_4)_2 + KF \rightarrow KY = 6;$ $UO_2SO_4 + Na_2CO_3 \rightarrow KY = 8;$ $ThOCl_2 + Na_2CO_3 \rightarrow ;$ $Th(C_2O_4)_2 + (NH_4)_2C_2O_4 \rightarrow KY = 8;$ $UO_2(NO_3)_2 + K_4[Fe(CN)_6] \rightarrow$ $(NH_4)_2U_2O_7 + (NH_4)_2CO_3 + H_2O \rightarrow KY = 8;$ $Th(SO_4)_2 + NH_4F \rightarrow .$ *f*-элементы (лантаноиды) $Ln + O_2$, (кроме Ce, Pr, Tb) ; $LaCl_3 + Ca$ $Ce + O_2 \stackrel{t}{\longrightarrow} .$ $Ce_2(C_2O_4)_3$ $Ce_2(CO_3)_3 + O_2 = {}^t$. : $Ce(OH)_4 + H_2SO_4 \rightarrow$: $Ce(OH)_3 + H_2O + O_2 \rightarrow$ $Ce(OH)_3 + HCl \rightarrow ;$ CeO₂ + NaOH ^t. $Ce(OH)_4 + HCl \rightarrow$: $Ce(OH)_3 + H_2O_2 \rightarrow$; $EuCl_2 + Na_2SO_4 \rightarrow$; $CeCl_3 + (NH_4)_2C_2O_4 \rightarrow :$ $EuC_2 + H_2O$ $Ce(SO_4)_2 + Na_2SO_3 + H_2O \rightarrow :$ $CeC_2 + H_2O$ $Ce(C_2O_4)_2 + (NH_4)_2C_2O_4 \rightarrow$ KY = 8. VI. РЕАКЦИИ РАДИОАКТИВНОГО РАСПАДА, ЯДЕРНЫЕ РЕАКЦИИ $^{226}_{88}$ Ra $\Rightarrow ...+^{4}_{2}$ He $^{27}_{13}\text{Al} + ^{4}_{2}\text{He} \Rightarrow ... + ^{1}_{0}\text{n}$ $^{234}_{90}$ Th $\Rightarrow ... + <math>\beta^{-}$ $^{10}_{5}B + ^{1}_{0}n \Rightarrow ... + ^{4}_{2}He$ $^{38}_{10}$ K \Rightarrow ... + β^+ $4_1^1 H \Rightarrow ... + 2\beta^+ + 26,7 M \ni B$ $^{235}_{92}U + ^{1}_{0}n \Rightarrow ^{90}_{38}Sr + ... + 2^{1}_{0}n$ $\frac{1}{1}p \Rightarrow \frac{1}{0}n + \frac{0}{1}e$ $^{235}_{92}U + ^{1}_{0}n \Rightarrow ^{93}_{36}Kr + ... + 3^{1}_{0}n$ $_{0}^{1}$ n \Rightarrow_{1}^{1} p $+_{-1}^{0}$ e $^{14}_{7}\text{N} + ^{4}_{2}\text{He} \Rightarrow ... + ^{1}_{1}\text{p}$ $^{238}_{92}U + ^{1}_{0}n \Rightarrow ^{239}_{92}U \Rightarrow ... + 2B^{-}$ 80

 $UO_2SO_4 + Zn + H_2SO_4 \rightarrow ;$

приложение

Таблица I

Энергия разрыва связей при 0 К двухатомных молекул

Молекула	E ₀ ,	Молекула	E ₀ ,	Молекула	E ₀ ,
	кДж/моль		кДж/моль	_	кДж/моль
Вг2	190,1	HBr	362,5	NO	626,8
CO	1072	HCI	427,8	O_2	493,6
CaF	531,1	HF	566,3	P ₂	485,6
Cl ₂	239,2	НІ	294,5	S ₂	422,6
F ₂	154,8	I_2	148,8	SiN	500
H ₂	432,2	. N ₂	941,6		

Таблица 2

Энергия разрыва связей в молекулах и радикалах газообразных веществ при 298 К

Вещество	Продукты диссоци- ации	Е ₀ , кДж/моль	Вещество	Продукты диссоци- ации	Е ₀ , кДж/моль
CH ₄	CH ₃ , H	435,1	CH ₃ CI	CH ₃ , C1	349,8
C ₂ H ₂	C ₂ H, H	502,I	H ₂ O	ОН, Н	498,7
	СН, СН	962,3	NH ₃	NH ₂ , H	438,1
C ₂ H ₄	C ₂ H ₃ , H	443,5	N ₂ O ₄	NO ₂ , NO ₂	57,4
	CH ₂ ,CH ₂	711,7	N ₂ O	N ₂ , O	167,4
C ₂ H ₆	C ₂ H ₅ , H	410,5	O ₃	O ₂ , O	107,1
C ₆ H ₆	C ₆ H ₅ , H	457,3	SiO ₂	SiO, O	472,8

Таблица 3

Энергия кристаллической решетки (ΔH_{298} , кДж/моль)

Ка-	Анионы							
ти- оны	F -	C1 ⁻	Br ¯	I -	н-	O 2-	OH -	S 2-
Li ⁺	1044,3	862,3	819,6	764,6	923,0	-	-	
Na⁺	925,9	788,3	753,1	705,8	810,0	-	-	-
Cu ²⁺	-	2763,9	-	-	-	4144,7	-	3726,3
Ca ²⁺	2613,3	2240,9	2157,3	2065,2	-	3533,8	2584,0	3107,0
Ba ²⁺	2316,2	2023,4	1952,5	1847,6	-	3140,5	2299,5	2738,8
Zn ²⁺	-	2688,6	2051,0	2596,6	-	4061,0	-	3441,7

Таблица 4

Относительные электроотрицательности атомов (ЭО) в молекулах (для приближенных расчетов можно использовать значения ЭО

без учета степени окисления элемента)

	003	учета степени	OKMOJI	CHIA SIICMCHIA)	
Z	Элемент	30	Z	Элемент	Э0
1	Водород	2,2	42	Молибден	1,6(+4);
]		2,1(+6)
3	Литий	1,0	43	Технеций	1,9
4	Бериллий	1,5	44	Ругений	2,2(+2)
5	Бор	2,0	45	Родий	2,2(+2)
6	Углерод	2,6	46	Палладий	2,2(+2)
7	Азот	3,0	47	Серебро	1,9
8	Кислород	3,5	48	Кадмий	1,7
9	Фтор	4,0	49	Индий	1,8
11	Натрий	0,9	50	Олово	1,8(+2);
			1		1,9(+4)
12	Магний	1,3	51	Сурьма	1,8(+3);
			<u> </u>		2,1(+5)
13	Алюминий	<u>1,6</u>	52	Теллур	2,1
14	Кремний	1,8	53	Иод_	2,6
15	Фосфор	2,1	55	Цезий	0,75
16	Сера	2,6	56	Барий	0,90
17	Хлор	3,1	57	Лантан	1,1
19	Калий	0,8	58	Церий	1,2
20	Кальций	1,0	63	Европий	1,2
21	Скандий	1,3	64	Гадолиний	1,3
22	Титан	1,3(+3);	65	Тербий	1,3
		1,6(+4)			
23	Ванадий	1,4(+3);	70	Иттербий	1,2
		1,7(+4);			
		1,9(+5)			
24	Хром	1,6(+3);	71	Лютеций	1,3
		2,4(+6)			
25	Марганец	1,4(+2);	72	Гафний	1,3
		2,5(+7)			
26	Железо	1,8(+2);	73	Тантал	1,3(+3);
		1,9(+3)			1,7(+5)
27	Кобальт	1,8(+2);	74	Вольфрам	1,6(+4);
		2,0(+3)			2,0(+6)
28	Никель	1,8(+2);	75	Рений	1,9
		2,0(+3)			
29	Медь	1,9(+1);	79	Золото	2,4
		2,0(+2)			
30	Цинк	1,6	80	Ртугь	1,9

Окончание табл. 4

				UK	лячиние тиол.
31	Галлий	1,7	82	Свинец	1,6(+2); 1,8(+4)
32	Германий	1,9	83	Висмут	1,8
33	Мышьяк	2,0	87	Франций	0,7
34	Селен	2,5	88	Радий	0,9
35	Бром	2,9	90	Торий	1,4(+4)
37	Рубидий	0,8	91	Протактиний	1,3(+3); 1,7(+5)
38	Стронций	1.0	92	Уран	1,4(+4); 1,9(+6)
39	Иттрий	1,2	93	Нептуний	1,4(+4); 1,9(+6)
40	Цирконий	1,4	94	Плутоний	1,3
41	Ниобий	1,6(+3)	97	Берклий	1,3

Вещество	ΔH ₀ 6 _{p,298} ,	S ₂₉₈ ,	ΔG 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
	кДж/моль	Дж/(моль·К)	кДж/моль
	Простые ве	ещества	
Ag(кр)	0	42,55	0
Al(κp)	0	28,33	0_
Ац(кр)	0	47,40	0_
В(кр)	0	5,86	0
Ва(кр)	0	60,67	0
Ве(кр)	0	9,54	0
Ві(кр)	0	56,90	0
Br ₂ (ж)	0	152,21	0
$Br_2(r)$	30,91	245,37	3,14
С(алмаз)	1,83	2,37	2,83
С(графит)	0	5,74	0
Са(кр)	0	41,63	0
Cd(кр)	0	51,76	0
Cl ₂ (r)	0	222,98	0

		IIpo	должение табл.
Вещество	$\Delta H_{\text{ofp,298}}^{0}$	S ₂₉₈ ,	$\Delta G_{\text{ofp,298}}^{0}$,
	кДж/моль	Дж/(моль·К)	кДж/моль
Со(кр)	0	30,04	0
Сг(кр)	0	23,64	0
Cu(кр)	0	33,14	0
$F_2(\Gamma)$	0	202,67	0
Fe(кp)	0	27,15	0
Ge(кр)	0	31,09	0
$H_2(\mathbf{r})$	0	130,52	0
Нg(ж)	0	75,90	0
Hg(r)	61,0	175,0	31,0
I ₂ (кр)	0	116,14	0
I ₂ (Γ)	62,43	260,60	19,39
К(кр)	0	64,18	0
La(кр)	0	56,90	0
Li(кp)	0	28,24	0
Мg(кр)	0	32,68	0
Mn(кр)	0	32,01	0
$N_2(r)$	0	191,50	0
Na(кр)	0	51,21	0
Na(ж)	2,60	_	_
Ni(κp)	0	29,87	0
$O_2(r)$	0	205,04	0
O ₃ (r)	-142,26	238,82	162,76
Р(бел)	0	41,09	0
Рь(кр)	0	64,81	0
S(ромб)	0	31,92	0
Sb(кp)	0	45,69	0
Sc(kp)	0	37,62	0
Se(кр)	0	42,44	0
Si(ĸp)	0	18,83	0
Sn(бел)	0	51,55	0
Th(κp)	0	53,39	0
Ti(κp)	0	30,63	0
U(кр)	0	50,29	0
Zn(kp)	0	41,63	0
Zr(κp)	0	38,99	0 .
AgBr(кр)	-100,42	107,11	-97,02
	0.4		

	Продолжение табл. 5						
Вещество	ΔH _{oбp,298} ,	S_{298}^{0} ,	$\Delta G_{\text{ofp,298}}^{0}$,				
	кДж/моль	Дж/(моль·К)	кДж/моль				
	Неорганические	соединения					
AgCl(кр)	-126,78	96,23	-109,54				
AgI(κp)	-61,92	115,48	-66,35				
AgNO ₃ (κp)	-124,52	140,92	-33,6				
Ag ₂ O(κp)	-30,54	121,75	-10,9				
Al ₂ O ₃ (корунд)	-1675,69	50,92	-1582,27				
AsCl ₃ (r)	-270,34	328,82	-258,04				
As ₂ O ₃ (клаудетит)	-653,37	122,72	-577,03				
As ₂ O ₃ (арсенолит)	-656,89	108,32	-576,16				
BaCO ₃ (кр)	-1210,85	112,13	-1132,77				
Ba(NO ₃) ₂ (кр)	-992,07	213,8	-797,23				
ВаО(кр)	-553,54	70,29	-525,84				
Ba(OH) ₂ (кр)	-943,49	100,83	-855,42				
BaSO ₄ (кр)	-1458,88	132,21	-1348,43				
$Ba_3(PO_4)_2(\kappa p)$	-4178,43	_	-3951,37				
CO(r)	-110,53	197,55	-137,15				
$CO_2(r)$	-393,51	213,66	-394,37				
СаСО ₃ (кальцит)	-1206,83	91,71	-1128,35				
CaCl ₂ (кр)	-795,92	108,37	-749,34				
CaF ₂ (кр)	-1220,89	68,45	-1168,46				
$Ca(NO_3)_2(\kappa p)$	-938,76	193,3	-743,49				
СаО(кр)	-635,09	38,07	-603,46				
Ca(OH) ₂ (кр)	-985,12	83,39	-897,52				
CdCl ₂ (кр)	-390,79	115,27	-343,24				
CdO(кр)	-258,99	54,81	-229,33				
CrCl ₃ (кр)	-556,47	123,01	-486,37				
CuCl ₂ (кр)	-205,85	108,07	-161,71				
CuO(кр)	-162	42,63	-134,36				
Cu ₂ O(кp)	-173,18	92,93	-150,56				
Eu ₂ O ₃ (кр)	-1662,72	146,44	-1568,16				
Fe(OH) ₂ (кр)	-569,02	_	-483,84				
Fe(OH) ₃ (кр)	-825,50	120,50	-695,80				
GeO₂(тетраг.)	-580,15	39,71	-521,59				
HBr(r)	-36,38	198,58	-53,43				
HCl(r)	-92,31	186,79	-95,3				
НІ(г)	26,36	206,48	1,58				
	0.5						

			<u>лже</u> ние тавл. 3
Вещество	$\Delta H_{\text{ofp,298}}^{0}$	S ₂₉₈ ,	$\Delta G_{\text{ofp,298}}^{0}$
	кДж/моль	Дж/(моль·К)	кДж/моль
HNO ₃ (ж)	-173	156,16	-79,9
HNO ₃ (Γ)	-135	267	-75
H ₂ O(кр)	-291,85	39,33	_
Н ₂ O(ж)	-285,83	69,95	-237,23
Η ₂ Ο(Γ)	-241,81	188,72	-228,61
Н ₂ О ₂ (ж)	-187,66	109,6	-120,52
$H_2O_2(\Gamma)$	-135,88	234,41	-105,74
Н ₃ РО ₄ (ж)	-1266,90	200,83	-1134,0
$H_2S(\Gamma)$	-20,6	205,7	-33,5
H ₂ SO ₄ (ж)	-813,99	156,9	-690,14
НдО(кр)	-90	70	-58
HgBr ₂ (κp)	-225	146	-179
KCl(кр)	-436,68	82,55	-408,93
KClO ₃ (кр)	-391,2	142,97	-289,8
КІ(кр)	-327,9	106,4	-323,18
KmnO ₄ (кр)	-828,89	171,54	-729,14
КОН(кр)	-424,72	79,28	-379,14
K₂CrO₄(кр)	-1385,74	200	-1277,84
$K_2Cr_2O_7(\kappa p)$	-2067,27	291,21	-1887,85
K ₂ SO ₄ (κp)	-1433,69	175,56	-1316,04
$La_2(CO_3)_3(\kappa p)$	-3446,70	_	-2950,5
La(OH) ₃ (κp)	-1360,8	125,6	-1230,9
La ₂ O ₃ (кр)	-1796,2	127,3	-1708,3
MgCO ₃ (κp)	-1095,85	65,1	-1012,15
MgCl ₂ (кр)	-644,8	89,54	-595,3
МдО(кр)	-601,49	27,07	-569,27
$Mg(OH)_2(\kappa p)$	-925	63	-834
MgSO ₄ ·6H ₂ O(кр)	-3089,5	348,1	-2635,1
MnCO ₃ (кр)	-881,66	109,54	-811,4
MnCl ₂ (κp)	-481,16	118,24	-440,41
МпО(кр)	-385,1	61,5	-363,34
MnO ₂ (κp)	-521,49	53,14	-466,68
NH ₃ (ж)	-69,8	_	-
NH ₃ (Γ)	-45,94	192,66	-16,48
NO(r)	91,26	210,64	87,58
NO ₂ (r)	34,19	240,06	52,29
	86		

			іжение табл. 3
Вещество	$\Delta H_{\text{ofp,298}}^0$,	S_{298}^{0} ,	$\Delta G_{\text{ofp,298}}^{0}$,
	кДж/моль	Дж/(моль·К)	кДж/моль
$N_2O_4(\Gamma)$	11,11	304,35	99,68
NOCl(r)	52,6	263,5	66,35
NaOH(кр)	-426,35	64,43	-380,29
Na ₂ CO ₃ (κp)	-1130,8	138,8	-1048,2
Na ₂ CO ₃ ·10H ₂ O(κp)	-4077	2172	-3906
Na ₂ O(кр)	-417,98	75,06	-379,26
Na ₂ SO ₃ (κp)	-1089,43	146,02	-1001,21
Na ₂ SO ₄ ·10H ₂ O(κp)	-4324,75	591,87	-3644,09
Na ₂ SiO ₃ (кр)	-1561,43	113,76	-1467,5
Na ₂ SiO ₃ (ж)	51,8	_	_
Na ₂ SiO ₃ (стекл)	-1541,64	-	
PH ₃ (r)	17,14	209,96	13,13
$P_2O_5(\kappa p)$	-1507,2	140,3	-1371,7
PbBr ₂ (κp)	-282,42	161,75	-265,94
PbCO ₃ (кр)	-699,56	130,96	-625,87
PbCl ₂ (кр)	-359,82	135,98	-314,56
PbI ₂ (κp)	-175,23	175,35	-173,56
РbO(желт)	-217,61	68,7	-188,2
РbO(красн)	-219,28	66,11	-189,1
PbO ₂ (кр)	-276,56	71,92	-217,55
Pb ₃ O ₄ (κp)	-723,41	211,29	-606,17
$Pb(OH)_2(\kappa p)$	- <u>545</u>	88	-452
PbS(kp)	-100,42	91,21	-98,77
PbSO ₄ (кр)	-920,48	148,57	-813,67
SO ₂ (Γ)	-296,9	248,07	-300,21
SO ₃ (r)	-395,85	256,69	-371,17
SO ₂ Cl ₂ (ж)	-378	210	-365
SO ₂ Cl ₂ (r)	-364	312	-320
ScCl ₂ (kp)	-606,1		
ScCl ₃ (кр)	-898,7	122,07	-859,83
SiO ₂ (кварц)	-910,94	41,84	856,67
SiO ₂ (стекл)	-903,49	46,86	-850,71
SnCl ₂ (кр)	-330,95	131,8	-288,4
SnCl ₄ (ж)	-528,86	258,99	-457,74
SnCl ₄ (r)	489,11	364,84	-449,55
SnO(кp)	-285,98	56,48	-256,88
	87		

			іжение табл. 3				
Вещество	$\Delta H_{\text{ofp,298}}^{0}$	S ₂₉₈ ,	$\Delta G_{\text{ofp,298}}^{0}$,				
	кДж/моль	Дж/(моль·К)	кДж/моль				
SnO ₂ (κp)	-580,74	52,3	-519,83				
TiO₂(рутил)	-944,75	50,33	-889,49				
TiO ₂ (анатаз)	-933,03	49,92	-877,65				
Y ₂ (CO ₃) ₃ (кр)	-3303,90		-2962,30				
Y(OH) ₃ (кр)	-1431,1	113	-1301,3				
Y ₂ O ₃ (кр)	-1906,3	99,2	-1817,6				
UF ₄ (кр)	-1910,37	151,67	-1819,74				
UF ₆ (кр)	-2188,23	227,61	-2059,82				
UO ₂ (кр)	-1084,91	77,82	-1031,98				
U ₃ O ₈ (кр)	-3574,81	282,42	-3369,5				
ZnCO ₃ (кp)	-812,53	80,33	-730,66				
ZnO(kp)	-348,11	43,51	-318,1				
ZnS(kp)	-205,18	57,66	-200,44				
ZnSO ₄ (κp)	-981,36	110,54	-870,12				
$Zn(OH)_2(\kappa p)$	-645.43	76,99	-555,92				
ZrCl ₄ (κp)	-979,77	181,42	-889,27				
	Органические соединения						
<u>СН₄(г)</u>	-74,85	186,27	-50,85				
$C_2H_4(\Gamma)$	52,30	219,45	68,14				
CH₃COOH(r)	-434,84	282,50	-376,68				
С ₂ Н ₅ ОН(ж)	-276,98	160,67	-174,15				
	Ионы в водны	х растворах					
Ag ⁺	105,75	73,39	77,10				
Ag ⁺	-529,99	-301,25	-489,80				
AsO 4 ³⁻	-890,06	-167,28	-648,93				
Ba ²⁺	-524,05	8,79	-547,50				
Br	-121,50	82,84	-104,04				
BrO ₃	-65,0	164,0	20,0				
CH₃COO⁻	-485,64	87,58	-369,37				
CN ⁻	150,62	96,45	171,58				
CNS.	74,27	146,05	89,96				
CO 3 ²⁻	-676,64	-56,04	-527,6				
Ca ²⁺	-542,66	-55,23	-552,7				

			іжение таол. Э
Вещество	ΔH _{oбp,298} ,	S_{298}^{0} ,	$\Delta G_{\text{ofp,298}}^{0}$,
	кДж/моль	Дж/(моль·К)	кДж/моль
Cd ²⁺	-75,31	-70,92	-77,65
Ce ³⁺	-698	-201	-676
Cl ⁻	-167,07	56,74	-131,29
ClO ₃	-98,35	_163,2	2,6
Cr ²⁺	-138,91	41,87	-183,26
Cr ³⁺	-235,98	-215,48	-223,06
CrO ₄ ²⁻	-875,42	46,02	-720,91
$\operatorname{Cr}_2\operatorname{O}_7^{2-}$	-1490,93	270,39	-1295,62
Cu ⁺	_72,8	44,35	50
Cu ²⁺	66,94	-92,72	65,56
$\left[\mathrm{Cu}(\mathrm{NH_3})_4\right]^{2^+}$	-346,52	280,5	-111,51
Eu ³⁺	-608,77	-221,75	- <u>557,</u> 81
Fe ²⁺	-87,86	-113,39	-84,88
Fe ³⁺	_47,7	-293,3	-10,53
H ⁺	0	0	0
HCO ₃	-691,28	92,57	-586,56
HPO 4 ²⁻	-1292,14	-33,47	-1089,28
HS.	-17,57	62,76	12,15
HSO 3	-627,98	132,38	-527,32
HSO 4	-887,77	127,97	-755,23
Hg ²⁺	171		164
<u>r</u>	-56,9	106,69	-51,94
La ³⁺	-707,60	-220,20	-683,30
MnO 4		191	-449
NH ⁺ ₄	132,8	112,84	-79,52
NO 2	-104,6	139,85	-37,16
NO ₃	-207,38	146,94	-111,49
Na ⁺	-240,3	5 <u>8</u> ,41	-2 61,9
	99		

Окончание табл. 5

Окончание таол.			
Вещество	ΔH _{0бp,298} ,	S ₂₉₈ ,	$\Delta G_{\text{ofp,298}}^{0}$
	кДж/моль	Дж/(моль·К)	кДж/моль
OH -	-230,02	-10,71	-157,35
PO 4	-1277,38	-220,29	-1018,81
Pb ²⁺	-1,18	-24,32	11,82
S 2-	32,64	-14,52	85,4
SO 3	-638,27	-38,28	-486,73
SO 4	-909,26	18,2	-743,99
Se ²⁻	64	-46	129
Sn ²⁺	-10,23	-25,26	-26,24
Th ⁴⁺	-760	-330	-724
U 3+	-514,63	-125,52	-520,59
U 4+	-590,15	-382,62	-538,91
UO 2+	-1018,66	-89,68	-954,71
Y ³⁺	-723,90	-267,90	-689,20
Zn ²⁺	-153,64	-110,62	-147,16

Таблица 6 Произведение растворимости малорастворимых соединений (ПР) в воде при 293 К

Вещество	ПР	Вещество	ПР
AgBr	5,3·10 ⁻¹³	KC1O ₄	1,1·10 ⁻²
Ag ₂ CO ₃	1,2·10 ⁻¹²	K ₃ [Ca(NO ₂) ₄]	4,3·10 ⁻¹⁰
AgC1	1,8·10 ⁻¹⁰	La ₂ (CO ₃) ₃	4,0·10 ⁻³⁴
AgI	8,3·10 ⁻¹⁷	La ₂ (C ₂ O ₄) ₃	1,0.10-25
Ag ₃ PO ₄	1,3·10 ⁻²⁰	Li ₃ PO ₄	3,2·10 ⁻⁹
Ag ₂ S	6,3·10 ⁻⁵⁰	Li ₂ CO ₃	4,0.10-3
Ag ₂ SO ₄	1,6·10-5	LiF	1,7·10 ⁻³
Ag ₂ CrO ₄	4,4·10 ⁻¹²	NaIO ₄	3.10-3
Al(OH) ₃	3,2·10 ⁻³⁴	Na[Sb(OH) ₆]	4,0.10-8

Окончание табл.б

Таблица 7

		Ok	сончание табл.б
Вещество	ПР	Вещество	ПР
AlPO ₄	5,75·10 ⁻¹⁹	NiC ₂ O ₄	4,0.10-10
BaCO ₃	4,0·10 ⁻¹⁰	NiCO ₃	1,3·10 ⁻⁷
Ba ₃ (PO ₄) ₂	6,0·10 ⁻³⁹	Ni(OH) ₂	$2,0\cdot10^{-15}$
BaSO ₄	1,1·10 ⁻¹⁰	PbS	$2,5\cdot 10^{-27}$
BaCrO ₄	1,2.10-10	Рb(OH)₂ желтый	7,9·10 ⁻¹⁶
BaC ₂ O ₄	1,1·10 ⁻⁷	Рb(OH)₂ красный	5·10 ⁻¹⁶
CaCO ₃	3,8·10 ⁻⁹	PbBr ₂	9,1·10 ⁻⁶
CaC ₂ O ₄	2,3.10-9	PbC ₂ O ₄	4,8·10 ⁻¹⁰
$Ca_3(PO_4)_2$	2,0.10 ⁻²⁹	PbI ₂	$1,1\cdot 10^{-9}$
CaSO ₄	2,5.10 ⁻⁵	Pb ₃ (PO ₄) ₂	$7,9 \cdot 10^{-43}$
Cd(OH) ₂	2,2.10-14	PbCl ₂	1,6.10-5
CdCO ₃	1,0.10-12	$Th(C_2O_4)_2$	$1,1\cdot 10^{-25}$
$Ce_2(C_2O_4)_3$	2,5·10 ⁻²⁹	Th(OH) ₄	2,0.10-50
CuI	1,1·10 ⁻¹²	$Th_3(PO_4)_4$	$7,6\cdot 10^{-79}$
Cu(OH) ₂	8,3·10 ⁻²⁰	$(UO_2)_2[Fe(CN)_6]$	$7,1\cdot10^{-14}$
CuS	6,3·10 ⁻³⁶	UO ₂ CO ₃	1,9·10 ⁻¹²
$Cu_2[Fe(CN)_6]$	1,3·10 ⁻¹⁶	UO ₂ (OH) ₂	$4,4\cdot 10^{-23}$
(CuOH) ₂ CO ₃	1, <u>7</u> ·10 ⁻³⁴	U(OH) ₄	$6,3\cdot10^{-55}$
Cu ₂ S	2,5·10 ⁻⁴⁸	ZnS	$1,6\cdot 10^{-24}$
Fe(OH) ₃	6,3·10 ⁻³⁸	ZnCO ₃	1,45·10 ⁻¹¹
Fe(OH) ₂	$7,1\cdot10^{-16}$	$Zn_3(PO_4)_2$	$9,1\cdot10^{-33}$
FeS	5,0·10 ⁻¹⁸	Zr(OH) ₄	$7,9 \cdot 10^{-55}$
Fe ₄ [Fe(CN) ₆] ₃	3,0.10-41	Zr ₃ (PO ₄) ₄	1,0.10-132

Константы диссоциации кислот и оснований

Электролит	Константа диссоциации			
	K ₁	K ₂	K ₃	
	Кис	лоты		
CH₃COOH	1,8-10-5		_	
H ₃ AsO ₄	6,0·10 ⁻³	1,0.10-7	3,0.10-12	
H ₃ BO ₃	5,8·10 ⁻¹⁰	_		
H ₂ B ₄ O ₇	1,8.10-4	2,0.10-8	_	
HBrO	2,5·10 ⁻⁹	_	_	
HCN	6,2·10 ⁻¹⁰			

Окончание табл.7

Электролит	Константа диссоциации		
•	K ₁	K ₂	K ₃
H ₂ CO ₃	4,5·10 ⁻⁷	4,8·10 ⁻¹¹	
H ₂ C ₂ O ₄	5,5·10 ⁻²	5,4·10-5	_
HClO	5,0·10 ⁻⁸	_	_
H ₂ CrO ₄	1,1.10-1	3,2·10 ⁻⁷	_
H ₂ Cr ₂ O ₇		2,3·10-2	_
HF	_6,8·10 ⁻⁴		_
HIO	2,3·10 ⁻¹¹	_	_
HIO ₃	1,6·10 ⁻¹	_	_
HNO ₂	5,1.10-4	_	_
H ₂ O ₂	2,0.10-12	_	-
H ₃ PO ₄	7,6.10-3	6,2·10 ⁻⁸	4,2·10 ⁻¹³
H ₂ S	1,0.10-7	1,0.10-14	
H ₂ SO ₃	$1,7\cdot10^{-2}$	6,2·10 ⁻⁸	_
H ₄ SiO ₄	1,3·10 ⁻¹¹	_	_
	Осн	ования	
AgOH	5,0.10-3	*	_
Al(OH) ₃	7,4·10 ⁻⁹	3,1.10-9	1,1.10-9
Ca(OH) ₂		4,0-10 ⁻²	_
Cd(OH) ₂	8,1.10-4	4,1·10 ⁻⁷	
Ce(OH) ₃	_	_	1,0.10-5
Cr(OH) ₃	_	3,6·10 ⁻⁹	8,9-10-11
Cu(OH) ₂	6,6·10 ⁻⁸	7,9·10 ⁻¹⁴	
Fe(OH) ₂	1,2·10 ⁻²	5,5·10 ⁻⁸	_
Fe(OH) ₃	4,8·10 ⁻¹¹	1,8·10 ⁻¹¹	1,5·10 ⁻¹²
Hf(OH) ₄	3,2·10 ⁻¹³	6,3·10 ⁻¹⁴	
La(OH) ₃	_	_	5,0.10-4
Pb(OH) ₂	9,5.10-4	3,0·10 ⁻⁸	
Th(OH) ₄	3,6·10 ⁻¹¹	2,4·10 ⁻¹¹	2,0.10-11
U(OH) ₄	_	1,4·10 ⁻¹¹	2,6·10 ⁻¹²
UO ₂ (OH) ₂	1,9·10 ⁻⁷	1,410 ⁻⁹	_
Zn(OH) ₂	1,2.10-5	4,9·10 ⁻⁷	_
Zr(OH) ₄	6,5·10 ⁻¹⁴	1,6·10 ⁻¹⁴	_
(CH ₃) ₂ NH ₂ OH	5,4·10 ⁻⁴	_	
C ₆ H ₅ NH ₃ OH	4,3·10 ⁻¹⁰	_	

Таблица 8 Общие константы нестойкости комплексных ионов

Вещество	К,	Вещество	K _H
$[Ag(NH_3)_2]^{\dagger}$	5,9·10 ⁻⁸	$\left[\mathrm{Cu}(\mathrm{OH})_4\right]^{2}$	4,0·10 ⁻¹⁷
$[Ag(OH)_3]^2$	6,3.10-6	[Fe(OH) ₄] ²	1,0·10 ⁻¹⁰
$[AgI_4]^{3}$	7,9.10 ⁻¹⁴	[Fe(OH) ₄]	4,0-10 ⁻³⁵
$[Ag(SCN)_4]^3$	2,1.10-10	[Fe(SCN) ₆] ³	5,9.10-4
[Ag(S2O3)3]5	3,5·10 ⁻¹⁴	[Fe(CN) ₆] ⁴⁻	1,3.10-37
[Ag(CN) ₄] 3-	3,8·10 ⁻²⁰	[Fe(CN) ₆] ³	1,3-10-44
[Al(OH) ₄]	1,0.10-33	[Ni(CN) ₄] ²	1,0.10-31
$[AlF_6]^{3-}$	2,1·10 ⁻²¹	$[Ni(NH_3)_6]^{2+}$	9,8·10-9
$\left[\mathrm{Au}(\mathrm{NH_3})_2\right]^+$	$1,0.10^{-27}$	[Th(OH) ₄] ⁰	7,9.10-41
[Au(CN) ₂]	5,0·10 ⁻³⁹	$[U(OH)_4]^0$	2,0.10-46
[Au(CN) ₄]	$1,0.10^{-56}$	[UO ₂ (OH) ₄] ²	4,0.10-33
$\left[\operatorname{Cd}(\operatorname{CN})_{4}\right]^{2}$	7,8.10-18	$[\mathrm{UO_2(CO_3)_3}]^{4}$	5,0·10 ⁻¹⁹
[Cr(OH) ₄]	2,5.10-29	[UF ₆] ²⁻	1,6·10 ⁻²⁵
$\overline{\left[Cu(NH_3)_4\right]^{2^+}}$	9,3·10 ⁻¹³	$[\mathrm{UO}_2\mathrm{F}_4]^{2^-}$	2,0.10-12

Таблица 9 Равновесные потенциалы выделения водорода и кислорода

pН	Уравнения электродных реакций	Электродный потенциал, В
pH< 7	$2H^{+} + 2e = H_{2}$	0
pH< 7	$2H_2O - 4e = O_2 + 4H^+$	1,226
pH =7	$2H_2O + 2e = H_2 + 2OH^-$	-0,413
pH= 7	$2H_2O - 4e = O_2 + 4H^+$	0,814
pH> 7	$2H_2O + 2e = H_2 + 2OH^-$	-0,828
pH> 7	$4OH^{-} - 4e = O_2 + 2H_2O$	0,401

Таблица 10

Стандартные электродные потенциалы в водных растворах при 298 К

Элемент	Реакция	pН	<i>E</i> , B
Ag	$Ag^+ + e \stackrel{\rightarrow}{\leftarrow} Ag \downarrow$		0 , 799
	$AgCl\downarrow + e \rightleftarrows Ag\downarrow + Cl$		0,22
Al	$Al^{3+} + 3e \stackrel{\longrightarrow}{\leftarrow} Al \downarrow$	<7	-1,622
	$A1^{3+} + 3e \stackrel{\longrightarrow}{\leftarrow} A1\downarrow$	>7	-2,35

2	D	Продолжен	
Элемент	$\frac{\text{Реакция}}{\text{As}^{+5} + 2e} \stackrel{?}{\rightarrow} \text{As}^{3+}$	pH <7	E, B 0,56
As			
	$As^{+5} + 2e \rightleftharpoons As^{3+}$	>7	-0,71
Au	$Au^+ + e \rightleftharpoons Au \downarrow$		1,68
	$Au^{3+} + 3e \rightleftharpoons Au \downarrow$		1,498
Ba	$Ba^{2+} + 2e \rightleftharpoons Ba \downarrow$		-2,906
Be	$Be^{2+} + \overline{2e} \stackrel{\longrightarrow}{\leftarrow} Be \downarrow$		-1,847
Bi	$Bi^{+5} + 2e \rightleftharpoons Bi^{3+}$	<7	1,80
	$Bi^{+3} + 3e \rightleftharpoons Bi \downarrow$	<7	0,371
	$Bi^{+3} + 3e \rightleftharpoons Bi \downarrow$	>7	- 0,46
Br	$Br_2 + e \rightleftharpoons 2Br^-$		1,063
	$2Br^{+5} + 10e \rightleftharpoons Br_2$	<7	1,52
С	$C^{+4} + 2e \rightleftarrows C^{+2}$		-0,12
Ca	$Ca^{2+} + 2e \stackrel{\rightarrow}{\leftarrow} Ca \downarrow$		-2,866
Cd	$Cd^{2+} + 2e \rightleftharpoons Cd \downarrow$		-0,403
Се	$Ce^{4+} + e \stackrel{\rightarrow}{\leftarrow} Ce^{3+}$		1,61
Cl	Cl ₂ ↑+2e 2		1,36
	C1 ⁺ + 2e ← C1 ⁻	>7	0,89
	$C1^{+3} + 2e \rightleftharpoons C1^{+}$	>7	0,66
	Cl ⁺⁵ + 6e ← Cl ⁻	<7	1,45
	$C1^{+5} + 6e \rightleftarrows C1^{-1}$	>7	0,63
	$2Cl^{+5} + 10e \rightleftharpoons Cl_2 \uparrow$		1,47
	$Cl^{+7} + 2e \rightleftharpoons Cl^{+5}$	<7	1,19
Co	$Co^{2+} + 2e \rightleftharpoons Co \downarrow$		-0,277
	$Co^{3+} + e \stackrel{\rightarrow}{\leftarrow} Co^{2+}$		1,95
	$Co^{3+} + 3e \rightleftarrows Co$		0,46
Cr	$\operatorname{Cr}^{+6} + 3e \rightleftarrows \operatorname{Cr}^{3+}$	<7	1,33
	$\operatorname{Cr}^{+6} + 3e \rightleftarrows \operatorname{Cr}^{3+}$	>7	1,46
	$\operatorname{Cr}^{3+} + 3e \rightleftarrows \operatorname{Cr} \checkmark$	<7	-0,74
	$\operatorname{Cr}^{3+} + 3e \rightleftarrows \operatorname{Cr} \checkmark$	>7	-0,12

		Продолжен	н ие та бл. 10
Элемент	Реакция	pН	E, \overline{B}
	$\operatorname{Cr}^{+3} + \operatorname{e} \stackrel{\longrightarrow}{\leftarrow} \operatorname{Cr}^{2+}$		-0,47
	$\operatorname{Cr}^{2+} + 2e \stackrel{\rightarrow}{\leftarrow} \operatorname{Cr} \downarrow$		-0,913
Cs	$Cs^+ + e \stackrel{\rightarrow}{\leftarrow} Cs \downarrow$		-2,923
Cu	$Cu^{2+} + 2e \stackrel{\rightarrow}{\leftarrow} Cu \downarrow$		0,337
	$Cu^{2+} + e \stackrel{\rightarrow}{\leftarrow} Cu^{+}$		0,521
Eu	$Eu^{3+} + 3e \stackrel{\rightarrow}{\leftarrow} Eu \downarrow$		-2,4
	$Eu^{3+} + e \stackrel{\rightarrow}{\leftarrow} Eu^{2+}$		-0,55
F	$F_2 \uparrow + 2e \neq 2F$		2,77
Fe Fe	$Fe^{2+} + 2e \stackrel{\rightarrow}{\leftarrow} Fe \downarrow$		-0,44
	$Fe^{3+} + 3e \stackrel{\longrightarrow}{\leftarrow} Fe \downarrow$		-0,058
	$Fe^{3+} + e \stackrel{\rightarrow}{\leftarrow} Fe^{2+}$	<7	0,77
	$Fe^{3+} + e \stackrel{\rightarrow}{\leftarrow} Fe^{2+}$	>7	-0,56
Ge	Ge ⁺⁴ +4e → Ge↓	<7	-0,15
H	2H + 2e → H ₂	<7	0
	2H ₂ O + 2e → H ₂ +2OH	=7	-0,413
	$2H_2O + 2e \stackrel{\rightarrow}{\leftarrow} H_2 + 2OH$	>7	-0,828
	H ₂ + 2e ≥ 2H		-2,25
Hg	$Hg_2^{2+} + 2e \rightleftharpoons 2Hg \downarrow$		0,792
	$Hg^{2+} + 2e \rightleftharpoons Hg \downarrow$		0,85
	$2Hg^{2+} + 2e \stackrel{\rightarrow}{\leftarrow} Hg_2^{2+}$		0,92
I	$I_2 \downarrow + 2e \rightleftharpoons 2\Gamma$		0,54
	$2I^{+5} + 10e \rightleftharpoons I_2 \downarrow$	<7	1,19
	I ⁺⁵ + 6e ← I ⁻	>7	0,26
	I ⁺⁵ + 6e → I ⁻	<7	1,08
	$I^{+7} + 2e \stackrel{\longrightarrow}{\leftarrow} I^{+5}$	<7	1,6
In	$In^{3+} + 3e \stackrel{\longrightarrow}{\leftarrow} In \downarrow$		-0,34
К	$K^+ + e \stackrel{\rightarrow}{\leftarrow} K \downarrow$		-2,925
La	$La^{3+} + 3e \stackrel{\rightarrow}{\leftarrow} La \downarrow$		-2,522
Li	Li ⁺ +e 		-3,046

Элемент	Реакция	pН	<i>E</i> , B
Mg	$Mg^{2+} + 2e \stackrel{\rightarrow}{\sim} Mg \downarrow$		-2,363
Mn	$Mn^{2+} + 2e \stackrel{\rightarrow}{\leftarrow} Mn^{\downarrow}$		-1,180
	$Mn^{+7} + 5e \stackrel{\longrightarrow}{\leftarrow} Mn^{2+}$	<7	1,51
	$Mn^{+7} + 3e \stackrel{?}{\sim} Mn^{4+} \downarrow$	<7	1,69
	$Mn^{+4} \downarrow + 2e \stackrel{\rightarrow}{\leftarrow} Mn^{2+}$	<7	1,23
	Mn ⁺⁷ + e → Mn ⁺⁶	>7	0,56
	$Mn^{+7} + 3e \stackrel{?}{\rightleftharpoons} Mn^{+4} \downarrow$	>7	0,60
	$Mn^{+6} + 2e \stackrel{\rightarrow}{\leftarrow} Mn^{+4} \downarrow$	>7	0,65
	$Mn^{+4} \downarrow + 2e \rightleftharpoons Mn^{2+}$	>7	-0,05
	$Mn^{+6} + 2e \rightleftharpoons Mn^{+4} \downarrow$	<7	2,26
Мо	Mo ⁺⁶ +e → Mo ⁺⁵		0,40
N	$N^{+3} + e \stackrel{\longrightarrow}{\sim} N^{+2}$	<7	0,98
	$N^{+3} + e \stackrel{\rightarrow}{\leftarrow} N^{+2}$	>7	-0,46
	$2N^{+3} + 6e \stackrel{\longrightarrow}{\sim} N_2 \uparrow$	<7	1,44
N	$2N^{+3} + 6e \neq N_2 \uparrow$	>7	0,41
• •	$N^{+5} + 2e \rightleftharpoons N^{+3}$	<7	0,94
	$N^{+5} + 2e \rightleftharpoons N^{+3}$	>7	0,01
	$N^{+5} + e \stackrel{?}{\sim} N^{+4}$	<7	0,80
	$N^{+5} + e \rightleftharpoons N^{+4}$	>7	-0,86
Γ	$N^{+3} + 3e \rightleftharpoons N^{+2}$	<7	0,96
	$N^{+5} + 3e \neq N^{+2}$	>7	-0,14
	$2N^{+5} + 10e \neq N_2 \uparrow$	<7	1,24
	$N^{+5} + 8e \rightleftharpoons N^{-3}$	<7	0,86
	$N^{+5} + 8e \rightleftharpoons N^{-3}$	>7	-0,12
Na	Na ⁺ + e → Na↓		-2,714
Ni	$Ni^{2+} + 2e \stackrel{\rightarrow}{\leftarrow} Ni \downarrow$		-0,25
	Ni ³⁺ + e → Ni ²⁺	<7	1,75
	Ni ⁺³ + e → Ni ⁺²	>7	0,49
0	$O_2 + 4e + 4H^+ = 2H_2O$	<7	1,23
	$O_2 + 4e + 4H^+ = 2H_2O$	=7	0,814

		Продолже	ч <u>ие та</u> бл. 10
Элемент	Реакция	pН	E, B
	$O_2 + 4e + 2H_2O = 4OH$	>7	0,401
	$O_2 \uparrow + 2e + 2H^{\dagger} \rightleftharpoons H_2O_2$	<7	0,68
О	$O_2 \uparrow + 2e + H_2 O \stackrel{?}{\rightleftharpoons} HO \stackrel{?}{\underset{2}{\rightleftharpoons}} + OH$	>7	-0, 076
	$H_2O_2+2e+2H^+ \stackrel{\longrightarrow}{\leftarrow} 2H_2O$	<7	1,77
	$HO_2^- + 2e + H_2O \stackrel{\rightarrow}{\leftarrow} 3OH^-$	>7	0,88
P	P ⁺⁵ + 2e ≠ P ⁺³	<7	-0,276
	$P^{+3} + 2e \stackrel{\rightarrow}{\rightleftharpoons} P^+$	<7	-0,50
Pb	$Pb^{2+} + 2e \neq Pb \downarrow$		-0,126
	$Pb^{+4} + 2e \rightleftharpoons Pb^{2+}$		1,66
Pt	$Pt^{2+} + 2e \rightleftharpoons Pt \downarrow$		1,19
	$Pt^{+4} + 2e \rightleftharpoons Pt^{+2}$		0,68
Pu	$Pu^{3+} + 3e \rightleftharpoons Pu \downarrow$		-2,03
Ra	$Ra^{2+} + 2e \rightleftharpoons Ra \downarrow$		-2,916
Rb	$Rb^+ + e \rightleftharpoons Rb \downarrow$		-2,925
Re	$Re^{+7} + 3e \stackrel{\longrightarrow}{\leftarrow} Re^{+4}$	<7	0,51
	$Re^{+7} + e \stackrel{\rightarrow}{\leftarrow} Re^{+6}$	<7	0,77
S	$S^{+6} + 2e \stackrel{\rightarrow}{\sim} S^{+4}$	<7	0,17
	$S^{+6} + 2e \not\subset S^{+4}$	>7	-0,93
S	S ⁺⁶ + 6e ≥ S↓	<7	-0,75
	S ⁺⁶ + 6e → S↓	>7	0,36
	$S^{+6} + 8e \stackrel{\rightarrow}{\leftarrow} S^{2-}$	<7	0,31
	S ⁺⁶ + 8e ≠ S ² -	>7	-0,68
	$S^{+4} + 2e \neq S \downarrow$	<7	0,45
	$S\downarrow + 2e \rightleftharpoons S^{2-}$		-0,46
	$S\downarrow + 2e + 2H^+ \rightleftarrows H_2S$		0,14
Sb	$Sb^{+3} + 3e \stackrel{\longrightarrow}{\leftarrow} Sb \downarrow$	<7	0,212
Se	Se + 2e → Se ²⁻		-0,92
Si	Si ⁺⁴ + 4e → Si↓	<7	-0,86
	Si ⁺⁴ + 4e 	>7	-1,70

		Оконча	ние <mark>та</mark> бл. 10
Элемент	Реакция	pН	E, B
_	$\operatorname{Sn}^{2+} + 2e \stackrel{\rightarrow}{\rightleftharpoons} \operatorname{Sn} \downarrow$		-0,136
Sn	$\operatorname{Sn}^{+4} + 2e \stackrel{\rightarrow}{\rightleftharpoons} \operatorname{Sn}^{+2}$	>7	-0,90
	$\operatorname{Sn}^{+4} + 2e \stackrel{\rightarrow}{\rightleftharpoons} \operatorname{Sn}^{+2}$		0,15
Sr	$Sr^{2+} + 2e \rightleftharpoons Sr \downarrow$		-2,89
Th	$Th^{4+} + 4e \rightleftharpoons Th \downarrow$		-1,90
Ti	$Ti^{4+} + e \rightleftharpoons Ti^{3+}$		0,10
	$Ti^{4+} + 4e \rightleftharpoons Ti \downarrow$		-1,90
T1	$Tl^+ + e \stackrel{\rightarrow}{\rightleftharpoons} Tl \downarrow$		-0,336
U	$U^{3+} + 3e \neq U \downarrow$		-1,79
	$U^{4+} + e \rightleftharpoons U^{3+}$		-0,607
	$U^{+6} + 2e \rightleftharpoons U^{4+}$		0,33
W	$W^{+6} + e \rightleftharpoons W^{+5}$		-0,03
V	$V^{3+} + e \rightleftharpoons V^{2+}$		-0,255
	$V^{+4} + e \rightleftharpoons V^{3+}$		0,361
	$V^{+5} + 2e \rightleftharpoons V^{4+}$	<7	1,0
Yb	$Yb^{3+} + 3e \rightleftharpoons Yb \downarrow$		-2,27
	Yb ³⁺ + e → Yb ²⁺		1,518
Zn	$Zn^{2+} + 2e \rightleftharpoons Zn \downarrow$	<7	-0,763
	$Zn^{2+} + 2e \rightleftharpoons Zn \downarrow$	>7	-1,216
Zr	$Zr^{4+} + 4e \stackrel{>}{\sim} Zr \downarrow$		-1,57

Таблица 11 Перенапряжение выделения водорода, кислорода и хлора на электродах

(приближенные значения при плотности тока $\leq 10^{-3}$ A/cм², T=298 K)

	_		
Электрод	η _{H2} , Β	η _{O2} , Β	η _{Cl2} , Β
Zn	0,8	1,5	-
Cu	0,5	0,8	
С (графит)	0,6	1,1	0,1
	00		<u> </u>

			Ontanue maon. 11
Электрод	η _{H2} , Β	η _{O2} , Β	η _{Cl2} , Β
Рt (платиниров.)	0	0,1	
Pb	1,2	1,2	_
Ag	0,7	0,5	
Cd	1,1	0,9	_

Таблица 12 Приближенные значения коэффициентов активности (y_t) ионов при различных ионных силах раствора (I)

No	I	3	аряд ион	ia .	№	I	Заряд иона				
п/п		±l	±2	±3	п/п		±1	±2	±3		
1	0,002	0,97	0,74	0,66	6	0,1	0,81	0,44	0,16		
2	0,005	0,95	0,66	0,55	7	0,2	0,81	0,41	0,14		
3	0,01	0,92	0,60	0,47	8	0,3	0,81	0,42	0,14		
4	0,02	0,90	0,53	0,37	9	0,4	0,82	0,45	0,17		
5	0,05	0,84	0,50	0,21	10	0,5	0,84	0,50	0,20		

Таблицы 13

СХЕМЫ ОКИСЛИТЕЛЬНО-ВОССТАНОВИТЕЛЬНЫХ ВЗАИМОДЕЙСТВИЙ

1) Взаимодействие металлов с азотной кислотой:

2) Взаимодействие металлов с серной кислотой:

3) Взаимодействие неметаллов (НеМе) с кислотами:

$$egin{align*} & HNO_3(\mbox{конц.}) & \longrightarrow & NO, \ NO_2 \ & & \mbox{высокой степени} \ & \mbox{H}_2SO_4(\mbox{конц.}) & \longrightarrow & SO_2 \ & \mbox{окисления.} \ & \mbox{окисления.} \ & \mbox{} \label{eq:2D}$$

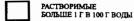
4) Взаимодействие перманганата калия:

5) Взаимодействие перекиси водорода:

$$H_2O_2$$
 + восстановитель \longrightarrow $+H_2O$ $+H_2O,OH$ \longrightarrow OH

$$H_2O_2$$
 + окислитель — O_2 .

6) Взаимодействие соединений хрома:


$$K_2Cr_2O_7 +$$
 восстановитель $\longrightarrow \frac{+H^+}{+H_2O} \longrightarrow -$ реакции нет $+OH^- \longrightarrow [Cr(OH)_6]^{3-} -$ синий $+H_2O \longrightarrow -$ реакции нет $+Cr_2O_7^{2-} -$ оранжевый $+H_2O \longrightarrow -$ реакции нет $+OH^- \longrightarrow CrO_4^{2-} -$ желтый.


7) Взаимодействие соединений серы

$$S^{2^{-}} \longrightarrow \begin{array}{c} \stackrel{+ \text{HNO}_{3}(\text{ pa36.}),\text{KMnO}_{4},\text{K}_{2}\text{Cr}_{2}\text{O}_{7}}{} & \text{S} \\ \stackrel{+ \text{O}_{2}}{} & \text{SO}_{2} \\ \stackrel{+ \text{HNO}_{3}(\text{ конц.}),\text{H}_{2}\text{O}_{2}}{} & \text{SO}_{4}^{2^{-}} . \end{array}$$

РАСТВОРИМОСТЬ КИСЛОТ, ОСНОВАНИЙ И СОЛЕЙ В ВОДЕ

			силь	ные о	СНОВА	кин	L		c	л А	ь	ы	E		o	c	н	0	в а	н	и	я		1
	AHHOHM	H,	K	Na ⁺	Ba²⁺	Ca2+	NH,	Mg²+	Al³·	Mn²+	Zn²+	Cr3.	Fe2+	Fe3+	Co2+	Ni ²⁺	Pb2+	Cu ²⁺	Hg²+	$\mathbf{Ag}^{^{+}}$	In³⁺	Th"	UO,²	Ti⁴⁺
	ОН							M	H	H	H	H	H	H	H	H	M	H	-	_	H	H	H	H
	NO,																							
l	SO,2				Н	M											M			M	M	M	M	
l	Br																M		M	H				
l	Cr																M			Н				-
l	SO,2				M	M			-		M	1	M	ı	H	H	H	1	ı	M				
l	C,O,2				H	H							M				M	H		H	H	H	M	
١	PO,				Н	H	1		H	H	H	H	H	H	H	H	Н	Н	H	H	Н	H	Н	H
l	F				M	-		H	M	M		H	M	M			Н		ŀ		H	H		~
I	CH,COO.								M															
l	CO,				H	H		H	1	Н	H			1	H	H	H	1	Į	H	H	H	H	H
	S²				-				_	H	H	-	H	H	H	H	H	H	H	H	1	-	H	H
<u> </u>	SiO,2	H			H	H	1	H	-	-	H	1	H	1	į	1	H	_	-			H		H

Список литературы

- 1. Коровин Н.В. Общая химия. М.: Высшая школа. 1998, 2000.
- 2. Гуров А.А., Бадаев Ф.З., Овчаренко Л.П., Шаповал В.Н. Химия: учебник для вузов. М.: Изд-во МГТУ им. Н.Э. Баумана, 2004.
- 3. Сергиевский В.В., Ананьева Е.А., Звончевская М.Ф., Котыхова О.А., Кучук Ж.С., Рудаков А.М. Химия растворов. М.: МИФИ, 2005.
- 4. В.В. Сергиевский, Е.А. Ананьева, Т.В. Жукова, М.Ф. Звончевская, Ж.С. Кучук, О.А. Котыхова. Неорганическая химия: учебное пособие для внеаудиторной работы. М.: МИФИ, 2007.
- 5. Ананьева Е.А., Звончевская М.Ф. Химическая термодинамика, равновесие, кинетика. М.: МИФИ, 2004.
- 6. Ананьева Е.А., Глаголева М.А., Звончевская М.Ф., Сергиевский В.В. Электрохимия. М.: МИФИ, 2006.
- 7. Лабораторный практикум по общей химии. Е.А. Ананьева, Н.С. Вагина, А.В. Вальков, М.А. Глаголева, Т.В. Жукова, М.Ф. Звончевская, Ж.С. Кучук, Н.Ю. Безрукова, В.И. Петров, И.В. Сорока, Н.Д. Хмелевская. /Под ред. Е.А. Ананьевой. М.: МИФИ,1999, 2001.
- Глинка Н.Л. Общая химия /Под ред. В.А. Рабиновича. Л.: Химия, 1985 – 1989.
- 9. Сергиевский В.В., Вагина Н.С., Вальков А.В., Несмеянова Г.М. Химия переходных металлов. М.: МИФИ, 1989.
- 10. Краткий справочник физико-химических величин / Под ред. А.А. Равделя, А.М. Пономаревой. Л.: Химия, 1983.

ПЕРИОДИЧЕСКАЯ СИСТЕМА ХИМИЧЕСКИХ ЭЛЕМЕНТОВ Д.И.МЕНДЕЛЕЕВА

, Oile	Y AH		<u> </u>	ΓР	у п п	ы э	ЛЕ	M E H	т о в	
HEPHI	INFRIGIBI PALIN I		II III IV			V	VI	VII	VIII	
1	1	1,008 1 1.1 1s ¹						(H)		He гелий
2	2	6,941 ³ / Li 2s'	9,012 ⁴ 2 Ве _{БЕРИЛЛИЙ} 2s ²	$\begin{array}{c} \mathbf{D} \\ BOP \end{array}$ $2s^22p^4$	С 2s ² 2p ²	$ \begin{array}{ccc} \mathbf{N} & \overset{7}{-3.1,2,3,4,5} \\ \mathbf{N} & & \mathbf{2s^22p^3} \\ & & & & & \\ & & & & & \\ \end{array} $	2s ² 2p ⁴	F 2s ² 2p ⁵		Ne 2s ² 2p ⁶
3	3	22,99 11 / Na 3s ¹ натрий	$ \mathbf{Mg} ^{\frac{2}{3s^2}}$	26,981 ¹³ 3 Al 3s²3p¹ Алюминий	Si 3s²3p²	<u>ΦΟ</u> 38 3p	S 3s ² 3p ⁴	ХЛОР		39,95 18 Ar <i>аргон</i> 3s ² 3p ⁶
1	4	39,098 19 / K калий 4s¹	КАЛЬЦИЙ	3d ¹ 4s ² SC Скандий	3d ² 4s ² II	3d ³ 4s ² V ВАНАДИЙ	$\frac{2,3,6}{3d^54s^4}$ Cr	2,3,4,6,7 3d ⁵ 4s ² Мп марганец	$ _{3d^44s^2}$ re $ _{3d^74s^2}$ co $ _{3d^84s^2}$ NI	
4	5	медь	² _{3d¹⁰4s² Zn}	69,72 31 3 Ga 4s²4p¹	Ge 4s²4p²	As 4s²4p³	Se 4s ² 4p ⁴	Br 4s ² 4p ⁵		83,80 36 2.4 Кг 4s ² 4p ⁶
_	6	РУБИДИЙ	СТРОНЦИЙ	3 39 88,906 4d¹5s² Y иттрий	4d ² 5s ²	4d ³ 5s ² ND	4d°5s' IVIU	4d ⁵ 5s ² Тс	2.3.4.6.8 ⁴⁴ 101,07 2.3.4.6 45 102,91 2.4 46 106,4 4d°5s' Rh РУТЕНИЙ 4d°5s' Phoduй Палладий	
5	7	1,3 4d ¹⁰ 5s ¹ Ag СЕРЕБРО	4d ¹⁰ 5s ² Cd	$In = \frac{1}{5s^25p^2}$	ЭП 5s²5p²	ЭО 5s²5p³	ТЕ 5s²5p'	ИОД		131,30 54 2.4,6,8 Xe 5s ² 5p ⁶
	8	132,91 ⁵⁵ / CS цезий 6s¹	Ва 6s²	ЛАНТАН	5d ² 6s ²	ТАНТАЛ	5d°6s'	РЕНИИ	2.4.6.8 76 190.2 3.4.6 77 192.22 2.4.6 78 195.09 5d ⁶ 6s ² OS 5d ⁷ 6s ² Ir 194.04 10.4 10.4 10.4 10.4 10.4 10.4 10.4	
6	9	79 196,97 5d ¹⁶ 6s ¹ Au 3ОЛОТО	1.2 5d ¹⁰ 6s ² Hg PTYTЬ	ТАЛЛИЙ 6s²6p¹	Pb $\frac{2.4}{6s^26p^2}$	$\mathbf{Bi} \qquad {}_{\mathbf{6s^26p^3}}$	РО 6s²6p⁴	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$		Rn 6s²6p°
7	10	[223] 87 / Fr 7s' ФРАНЦИЙ	226,03 88	89 (227)	$ _{6d^27s^2}$ Rf	105 [262]	186 [262]	6d ⁵ 7s ² Bh	108 265 109 266 110 1 6d*7s² HS 6d*7s² Mt DS хассий мейтнерий дармштадтий	
					*		а н о и			
140,12 ⁵ Се	4f ² 6s ²	10,91 ⁵⁹ 3.4 Рг 4f ³ 6s ² Nо	d 4r6s2 Pm	4f6s2 Sm 4	2,3 151,96 ⁶³ 2 И ⁶ 6s ² Е U 4f ² 6	s²	Тb 4f"6s1 Д	ЈУ 45°6s² <mark>Н</mark> о	O 46'68' Er 46'268' Tm 46'368' Yb 46'6	2.3 174.97 ⁷¹ 3 6s ² Lu 4f ⁴ d ⁴ 6s ² лютеций
<u> </u>	, ,				* *		иноид		99 100 101 102	103
232,04 ⁹ Th торий	51°6d°7s²	31,03 ⁹¹ 3,4,5 238,0 Ра 51 ² 6d ¹ 7s ² U уран	5f'6d'7s2 Np 5	sr'6d'7s² Pu sr'o	6d'7s $^{\scriptscriptstyle 2}$ ${ m Am}$ 51 $^{\scriptscriptstyle 6}$ 6d'	7s² Cm 56°d'7s²	BK 51°6d'7s ²	T 5f"7s2 ES	99 2,3 $_{\downarrow}^{1257 }$ 100 2,3 $_{\downarrow}^{1257 }$ 101 2,3 $_{\downarrow}^{1255 }$ 102 $_{\downarrow}$ 101 2,3 $_{\downarrow}$ 101 2,3 $_{\downarrow}$ 101 101 2,3 $_{\downarrow}$ 101 1	2.3 1256 103 3 7s² (Lr) 5f⁴6d¹7s² лоуренсий